
A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
y=sin(x)とy=a*cos(x)の交点のx座標をb(0<b<π/2)と置く。
sin(b)=a*cos(b) → tan(b)=a → b=tan^-1(a) → cos(b)=1/√(1+a^2)
面積S=∫[0,b]sin(x)dx+∫[b,π/2] a*cos(x)dx
=1-cos(b)+a*(1-sin(b))
=1+a-cos(b)-a^2*cos(b)
=1+a-(1+a^2)cos(b)
=1+a-√(1+a^2)
No.1
- 回答日時:
こんばんわ。
以下、考え方を簡単に。
まずはグラフを描いてみてください。
すると、2つの曲線は必ず 0≦ x≦ π/2で交わります。
当然、面積を求める積分はこの交点を境としたものになります。
そこで、交点の x座標を x=αとおきます。
交点ですから、y座標に関する関係式が得られます。
そして、面積を「とりあえず」 aと αを用いて表します。
上で求めた関係式ともう一つ「sinαとcosαの基本的な関係式」を用いれば、
αを消去することができます。
計算というよりも、ちょっと工夫のいる問題ですね。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
e^2xのマクローリン展開を求め...
-
1+cosθをみると何か変形ができ...
-
この問題の解き方を教えてくだ...
-
x=rcosθ の微分
-
cos(2/5)πの値は?
-
積分の問題です
-
加法定理
-
長方形窓の立体角投射率
-
tanθの値しかわからない時cosθ...
-
(cosx)^8の積分
-
1/(a+btanx)の積分
-
eの2πi乗は1になってしまうんで...
-
三角関数・微分の問題です
-
体積を求める公式の導き方
-
1+ tan² θ=1/cos² θ の公式を、...
-
cos60°が、なぜ2分の1になるの...
-
cosΘの問題
-
三角関数
-
自然対数eは何に使えるのですか...
-
fn(x)の式がよくわかりません
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
e^2xのマクローリン展開を求め...
-
eの2πi乗は1になってしまうんで...
-
1+cosθをみると何か変形ができ...
-
長方形窓の立体角投射率
-
積分
-
三角関数
-
cos(2/5)πの値は?
-
cos2x=cosx ってなにを聞かれ...
-
数学の質問です。 0≦θ<2πのとき...
-
不定積分∫dx/√(1-x^2)=arcsin(x...
-
複素数zはz^7=1かつz≠1を満たす...
-
a>0とする。曲線y=sin2x(0≦x≦π...
-
【数学】コサインシータって何...
-
双極子モーメントの別解
-
インテグラル(cosx/(1+sinx))dx...
-
1/ a + bcosx (a,b>0)の 不定積...
-
∮sinθcos^2θを置換積分なしで =...
-
1+ tan² θ=1/cos² θ の公式を、...
-
△ABCにおいてAB=4、BC=6、CA=5...
-
数3です。 第n項が次の式で表さ...
おすすめ情報