柔軟に働き方を選ぶ時代に必要なこと >>

次のような円環状線電荷分布のつくる電場を求める問題をガウス則を用いて解こうと思った場合には具体的にどのようにすればよいでしょうか?

(問) xy平面上の半径aの円環に線密度λで電荷が一様に分布している場合のz軸上の電場を求めよ

この手の対称性の良くないモデルにおいて電場を求めるにはガウス則は適しておらず、クーロン則と重ね合わせの理を用いて解くべきであるというのは承知した上での質問です。

また、この問以外の対称性の良くないモデルにガウス則を適用するための汎用的な手法があればご教示願います。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

 まずガウス則とクーロン則の関係ですが、クーロン則からガウス則を導けます。

ガウス則の支配方程式はラプラス(ポアソン)方程式で、それらを点源に適用すると、再びクーロン則に戻ります。

 なのでクーロン則とガウス則の違いは、微分法則か積分法則かの違いで、その意味で「対称性の良くないモデルにガウス則を適用するための汎用的な手法」は、#1さんの仰るように、有限要素法とか境界要素法になります。どちらも本質的に積分方程式を用いた解法だからです。

 ただしたんにラプラス(ポアソン)方程式を解くだけなら、線形問題(重ね合わせの理が有効)に対しては一番強力で便利な境界要素法を奨めます。ラプラス(ポアソン)方程式の境界要素法は、既に完成されています。


 ところで対称性が良いからガウス則を用いる、というのが現実です。ガウス則を手計算で用いるには、等電位面を特定する必要があります。等電位面が対称性から容易に特定できる時、内部電荷量/等電位面面積により、電場が手計算で容易に求まります。

 例えば円環が点に見えるくらいじゅうぶん遠く離れた地点での電場は、クーロン則から全方位に対して対称なので、

  E=k×2πaλ/(4πr^2)=k/2×aλ/r^2    (1)
  ※k:誘電率の逆数.

とあっさり求まります。Eの方向はもちろん、中心が円環位置の半径rの球面に垂直です(ただしrは十分大きい)。このような場合には、ガウス則を積極的に使うべきです。

 ところでこういう風に具体的に考えてみると、技術的にはガウス則ではなく、対称性をいかに見抜くか、だと思いませんか?。そう割り切って考えると、ガウス則よりクーロン則を用いた方が、より簡単に計算できる場合だってありえます。


 電荷が分布する円環の中心が座標原点にあるなら、電場はz軸まわりに回転対称です。そうすると電場の水平方向成分は0とわかります。電場の水平方向成分をEhとすると、ある方向にEhがあるなら、それから180°回った方向にも逆向きにEhがなければなりません。

 何故なら「電場はz軸まわりに回転対称」だからです。従ってEh=-Ehで、移項すれば2・Eh=0から、Eh=0です。よってz軸上で電場はz方向成分Ezしか持ちません。その大きさは、円環上の線素dsにある電荷量λ・dsからクーロン則で、

  dEz=k×λ・ds/r^2×|z|/r   (2)
  r=√(a^2+z^2)

とすぐにわかります。円環全体では、「z軸まわりに回転対称」なので、部分部分の線素は(2)と全く同じ寄与です。重ね合わせの理から、dEzを2πa/ds倍すれば良いとなります。

  Ez=dEz×2πa/ds=k×(λ・ds)(2πa/ds)/r^2×|z|/r=k×2πaλ|z|/r^3   (3)
  r=√(a^2+z^2)

 ちなみ(2)(3)で|z|となるのは、Ezはxy平面に対して上下対称だとすぐわかるからです。さらに(式からも明らかですが)、Ehと同じ発想で、z=0でEz=0もわかります。


 (問)の対称性は「良い」ですよ。じっさい(1)と(2)(3)の表式を比較して、そんなに大きな手間の違いはないですよね?(^^)。
    • good
    • 0
この回答へのお礼

興味本位で聞いてみたのですが、思った以上に丁寧に解説くださりありがとうございました。お陰様でなかなかに面白い知見を得ることができました。

お礼日時:2014/09/20 07:58

無理じゃない。



ガウスの法則を使う場合、面積分もしくは体積分をしなければならないんだから。
しかも、その被積分関数E(ベクトルです)が分からないんだし。


☆また、この問以外の対称性の良くないモデルにガウス則を適用するための汎用的な手法があればご教示願います。
◇これにこだわるならば、ラプラス方程式を解くことになるんじゃない。
これも、すこし複雑になると、解析解を求めるのは絶望的になります。

あるいは、
有限要素法や境界要素法などを用いた数値計算。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q電磁気学

来週テストがあり、困っています!
わかる方、回答お願いします。

「xy平面に半径aの円環がある。
(1)z軸上の点の電位を求めよ。
(2)空間内の任意の点における電位も求めよ。
ただし、円環上の電荷は線密度σで一様に分布。」という問題で、

(1)でV(z)=σa/2ε√(a^2 +z^2) というところまではわかるのですが、(2)の解説によると上の式を
V(z)=σ/2ε Σ(2n-1)!!/(2n)!! (-1)^n (z/a)^2n
と変形して解答を示してあるのですが、
なぜこのように変形できるのでしょうか?
調べてみてルジャンドル関数の
∫(0→1) P_n(x) dx = (-1)^n-1/2 (n-2)!!/(n+1)!! (nが奇数の時)
に近い気がするのですが、関係ありませんか?

また、!!という記号の意味も教えてください。!が1つなら階乗の気がするのですが…

Aベストアンサー

参考程度に
!!という記号の意味も教えてください。!
多重階乗参照のこと、奇数か偶数のみの階乗ですね。
http://ja.wikipedia.org/wiki/%E9%9A%8E%E4%B9%97
それから√(1 +(z/a)^2)の級数展開近似で表現してるだけでは!

Q無限に長い円筒の側面上に電荷が一様な面密度

半径Rの無限に長い円筒の側面上に電荷が一様な面密度σで分布しているとき、ガウスの法則を用いて生じた電場を求めよ。

以下参考書の解説
 閉曲面Sとして、電荷の分布する円筒と同軸の半径r、長さLの円筒面を選ぶ。Sについての電場Eの面積分はE2πrL
 Sの内部に含まれる電荷はr<Rのとき0、r >Rのときσ2πRL
 よって、ガウスの法則より、E=0(r<R)、σR/εr(r >R)

なぜ、Sの内部に含まれる電荷はr >Rのときσ2πRLなんですか?
なぜ、E=σR/εr(r >R)なんですか?

詳しい解説お願いします。

Aベストアンサー

>Sの内部に含まれる電荷はr >Rのときσ2πRLなんですか?

問題の定義どおりです。

面密度 x 円筒の表面積 = σ x 2πRL

>なぜ、E=σR/εr(r >R)なんですか?

ガウスの法則から

電場=電荷量/(ε局面Sの側面積) = σ x 2πRL/(ε2πrL)=σR/(εr)

Q電荷が球殻内に一様に分布する問題について

「 内半径a,外半径bの球殻(aくb)があり,球殻の中心からの距離rとする.電荷Qが球殻部分(aくrくb)に一様に分布しているとき,電界と電位を求めよ.また,rくa,bくrは真空として真空の誘電率をε0する.」
という問題です.
この問題は試験問題だったため回答がないので,一応参考書などを読んで似たような問題を見たりしたのですが,今一つ理解できません.
もしよろしかったら,どなたか教えていただけないでしょうか?
よろしくお願いします.

Aベストアンサー

hikamiuさんが既にお答えされていますので、以下は具体的な計算のやり方についての話です。計算のやり方は大学の先生のご好意による講義ノート(参考URL)が公開されていますので、そこの7の6を参照してみてください。もっともその前に講義ノートの6の5で少し計算の地ならしをしてから進まれたほうが理解が速いかもしれません。

参考URL:http://www-d.ige.solan.chubu.ac.jp/goto/docs/djk1/p0idxA.ssi

Q同心球導体球の接地について

同心球導体球の接地について、過去に質問されていなかったのでおねがいします。
同心球導体球において、外側の球に電荷Qを与え、内側の球を接地した場合、電界はどのようになるのでしょうか?
(内側の球の半径a、外側の球の内径b、外径cです。)
回答は、
a<r<b、c<rの場合についてお願いします。

Aベストアンサー

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷) + Q - Q'(外側の球の表面電荷) = Q - Q'
  半径 r の球面上の電界を E1(r) とすれば、Gaussの定理より、4*π*r*E1(r) =( Q - Q')/ε → E1(r) = ( Q - Q' )/( 4*π*ε*r^2 ) ---[1]
  半径 r の球面上の電位を V1(r) とすれば、V1(r) = ∫[r~∞] E1(r) dr = ( Q - Q' )/( 4*π*ε*r )
  外側の球の表面電位は V1 = V1(c) = ( Q - Q' )/( 4*π*ε*c )

  内球と外球の間にある半径 r ( a<r<b ) の球面を考えると、その球面に含まれる電荷は、内側の球の表面電荷 -Q' だけだから、
  半径 r の球面上の電界を E2(r) とすれば、Gaussの定理より、4*π*r*E2(r) = - Q'/ε → E2(r) = -Q'/(4*π*ε*r^2) --- [2]
  半径 r の球面上の電位を V2(r) とすれば、V1 - V2(r) =∫[r~b] E2(r) dr = -Q'/(4*π*ε)*( 1/b - 1/r ) 。
  式[3]から、V1 =( Q-Q' )/( 4*π*ε*c ) なので、V2(r) = V1 + Q'/(4*π*ε)*( 1/b-1/r ) = ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/r )
  内側の球は接地されているので、V2(a) = 0  →  ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/a ) = 0
  したがって、Q' = Q/{ c* ( 1/a - 1/b + 1/c ) } = Q/{ 1 + c*( 1/a - 1/b ) } --- [3]

(3)電界分布
  式[3]を式[1],[2] に代入すれば
  E1(r) = ( Q-Q' )/( 4*π*ε*r^2 ) = Q*[ 1 - 1/{ 1 + c*( 1/a - 1/b ) } ]/( 4*π*ε*r^2 ) = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  E2(r) = -Q'/(4*π*ε*r^2) = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(4)まとめ
  a<r<b のとき、E = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  c<r  のとき、 E = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷...続きを読む

Q同心球殻状の導体から作られるコンデンサー 電場 電位差 電気容量

半径aと半径b(a<b)の同心球殻状の導体から作られるコンデンサーを考える。
外側球殻が電荷Qを帯び、内側球殻が電荷-Qを帯びているとし、以下の問いに答えよ。
(1)外側球殻と内側球殻にはさまれた領域の電場を求めよ。
(2)外側球殻と内側球殻の電位差Vを求めよ。
(3)このコンデンサーの電気容量を求めよ。

という問題が解けません。
特に、同心球殻状の導体から作られるコンデンサーの考え方がわかりません。
どなたか解いていただけませんか。
よろしくお願いします。

Aベストアンサー

基本的な考え方だけ説明します。
「球面上に一様に分布した電荷qは、球内に電場を作らず、球外では
動径方向を向く電場E(r)=q/(4πεr^2)をつくる」(ε:真空の誘電率)

内球に電荷q1が分布するとき、
0<r<aでE1(r)=0,a<rでE1(r)=(1/4πε)(q1/r^2)
外球に電荷q2が分布するとき、
0<r<bでE2(r)=0、b<rでE2(r)=(1/4πε)(q2/r^2)
実際の電場は、E(r)=E1(r)+E2(r)

電荷は、内球の外面にq1,外球の内面に-q1,外球の外面にq2分布する。

電位は、
φb=∫[0→∞] E(r)dr=(1/4πε)(q1+q2)/b
φa=φb+∫[a→b] E(r)dr=φb+(q1/4πε)(1/a-1/b)

q1=-Q,q2=+Qより、電位差は、
V=φa-φb=(Q/4πε)(1/a-1/b)だから、
C=Q/V=(Q/4πε)/(1/a-1/b)

Q線電荷による電位

単位長さあたりq[C]の無限直線の線電荷から距離aだけ離れた点の電位を求めたいのですが。
電界はE=q/4πε0a[V/m]となったのですが、ここから電位を求めるにはどうすればいいのでしょうか?点電荷だと-∫[∞→r]Edrというような感じで求めることができると思いますが、線電荷の場合はどうなのでしょう?

Aベストアンサー

電位の基準点は断りがなければ無限遠点にとるのが普通です.
これは,無限遠点はどこから見ても無限遠点なので,
電荷が複数あった場合に基準点を共通に取れると言うことから来ています.
電位というのは標高みたいなものですから,
2つ以上の電荷があるときには基準点を統一しないと直接比較ができないことになります.

でも今の場合は基準点を無限遠点に取ると電位が発散してしまいますので,
この種の問題では「ただし,電位の基準点は線電荷から距離 R の場所とする」
というような但し書きがあるのが普通です.
但し書きがなければ,自分で
「電位の基準点をは無限遠点に取るのが通常だが,
今はそうできないので距離 R の点を基準にした」
などと書いておけば文句のつけようはないでしょう.

電位を単なる電界の不定積分にするのは(少なくとも私は)感心できません.

Qベクトル解析の面積分

ベクトル解析学の面積分でわからないところがあります。
面積分習いたてであまりわからないのですが、
S:円柱面 y^2+z^2=4
0≦x≦1
z≧0
のとき、次の面積分を求めよ。
∫_[S](xi+yj+zk)・dS

この問題なのですが、
z^2=4-y^2≧0
y^2≧4
-2≦y≦2
くらいまで少し考えてみたのですが、すぐに行き詰まってしまいました。
この後はどうすればいいのでしょうか。
今まではこの後に
z=f(x,y)
とかになり、fxやfyを出せたのですぐにできたのですが、zがxで表現できないので…
よろしくお願いします。

Aベストアンサー

問題の図形は半円柱 (カマボコ型) ですが,
積分する範囲は円柱の側面 (曲面部分) だけでいいのでしょうか,
それともカマボコ型の表面全体でしょうか?
一応各部分に分けて計算します.

円柱座標を使って y = r * cosθ,z = r * sinθ とします.

■半円柱の側面 (曲面部分)

・外向きの法線ベクトル:(0, y,z)=(0, r * cosθ, r * sinθ).
これを正規化すると単位法線ベクトルnは (0, cosθ,sinθ).

・微小面積 |dS| = r * dθ * dx.

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, r * cosθ, r * sinθ)・(0, cosθ, sinθ) * |dS|
= (r * (cosθ)^2 + r * (sinθ)^2) * r * dθ * dx
= r^2 * dθ * dx.

これを 0≦θ≦π,0≦x≦1 の範囲で積分すると,円柱側面での面積分は,
I1 = r^2 * π * 1 = πr^2.


■円柱の底面 (x=1)

・外向きの単位法線ベクトル:n=(1,0,0).

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, y, z)・(1, 0, 0) * |dS|
= x * |dS|
= |dS|.

これを円柱の底面にわたって積分すると,底面積そのものなので,
I2 = πr^2 / 2.


■円柱の底面 (x=0)

・外向きの単位法線ベクトル:n=(-1,0,0).

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, y, z)・(-1, 0, 0) * |dS|
= -x * |dS|
= 0.

∴ I3 = 0.


■カマボコの底面 (z=0)

・外向きの単位法線ベクトル:n=(0,0,-1).

∴ (x, y, z)・dS
= (x, y, z)・(0, 0, -1) * |dS|
= -z * |dS|
= 0.

∴ I4 = 0.

したがって全体の面積分は I1+I2+I3+I4 = (3/2)πr^2 = 6π.

答え合ってますか?

問題の図形は半円柱 (カマボコ型) ですが,
積分する範囲は円柱の側面 (曲面部分) だけでいいのでしょうか,
それともカマボコ型の表面全体でしょうか?
一応各部分に分けて計算します.

円柱座標を使って y = r * cosθ,z = r * sinθ とします.

■半円柱の側面 (曲面部分)

・外向きの法線ベクトル:(0, y,z)=(0, r * cosθ, r * sinθ).
これを正規化すると単位法線ベクトルnは (0, cosθ,sinθ).

・微小面積 |dS| = r * dθ * dx.

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, r...続きを読む

Q直線電流と円電流との間に働く力

無限に長い直線電流Iとそれと同一平面上にある半径Rの円電流I’があって、直線電流と円電流の中心との距離がaのとき、両者の間に働く力の大きさと向きはどのようになりますか? 自分で何となく式が立っているのですが、うまく積分することができませんでした。 年末の忙しい時期に申し訳ないのですが、誰か答えていただけませんか?

Aベストアンサー

大昔、計算したものをみると、面倒。
 円の回路C1の中心を原点に、半径をa、電流I1が反時計方向に流れている、C1の1点を(1)としX軸とのなす角をθとする。
 直線の回路C2をY軸に平行に取り、そのX座標をb(>a>0)とし、+Y方向に電流I2が流れている。C2の1点を(2)としその座標を(b,y)とする。と、問題の設定ができました。

ベクトル(1)(2)をr~、r=|r~|、C1,C2の線素ベクトルをds1~,ds2~とするとビオサバールの式によりC1がC2におよぼす力F12~は
F12~=(μI1I2/4π)∫[c1]∫[c2](ds2~×(ds1~×r~))/r^3
r~=(b-a・cosθ)i~+(y-a・sinθ)j~
ds1~=adθ(-sinθi~+cosθj~)
ds2~=dyj~
ここでi~,j~,k~はX,Y,Z方向の単位ベクトルです。

ds1~×r~=adθ(a-y・sinθ-b・cosθ)k~
ds2~×(ds1~×r~)=dyadθ(a-y・sinθ-b・cosθ)i~
これで積分できる準備ができました。

まず∫[c2]=∫[-∞,+∞]dyはY=y-a・sinθの変数変換をして、遇奇関数により簡単化し、Y=(b-a・cosθ)tanφと変数変換して計算を完了します(cosを含むある程度簡単な式になる)。

最後に、∫[c1]=∫[-π,+π]dθは定石どおり、tan(θ/2)=tとすれば
F12~=μI1I2(1-b/√(b^2-a^2))i~
となる。根気だけです。(^o^)y-

大昔、計算したものをみると、面倒。
 円の回路C1の中心を原点に、半径をa、電流I1が反時計方向に流れている、C1の1点を(1)としX軸とのなす角をθとする。
 直線の回路C2をY軸に平行に取り、そのX座標をb(>a>0)とし、+Y方向に電流I2が流れている。C2の1点を(2)としその座標を(b,y)とする。と、問題の設定ができました。

ベクトル(1)(2)をr~、r=|r~|、C1,C2の線素ベクトルをds1~,ds2~とするとビオサバールの式によりC1がC2におよぼす力F12~は
F12~=(μI1I2/4π)∫[c1]∫[c2](ds2~×(ds1~×r~))/r^3
r~=(b-a・co...続きを読む

Q導体で同心の外球、内球があり内球が接地されています。

http://oshiete1.goo.ne.jp/qa3031710.html

ここの問題の条件で、内外球の静電容量を求めよという問題があります。今やっている問題とほぼ一致した条件なので引用させてもらいました。

僕自身、接地するということがいまいちどういうことなのか理解できていない感じなのですが、
引用した質問の電界の答えから、内外球の電位差を求めてC=Q/Vという定義から静電容量を求めたところ、答えと一致しました。

そこで疑問がわいたのですが、C=Q/Vの定義が使えるのは外球と内球にそれぞれ-Q、+Qの電荷を与えているときと教科書に書いてありました。

この問題だと、外球にQの電荷を与えているだけで、内球には-Q'の電荷が誘起されています。
なぜC=Q/Vの定義から答えが算出できたのでしょうか?

電磁気学の理解に乏しいので詳しく教えていただきたいです。

Aベストアンサー

「与えた」に余りこだわりすぎると
「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.

わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在することになります.

上の孤立球の問題も,無限遠から孤立球に電荷 Q を移したと考えればよろしい.
そうすると,孤立球に +Q の電荷があるわけで,無限遠との電位差 Q/4πε_0 a から
Q = CV にしたがって C = 4πε_0 a と容量が求まります.

さて,今の問題で内球を接地したというのは内球と無限遠を導線でつないだ,
つまり内球と無限遠との電位差を同じにしたことを意味します.
で,上の解釈に従えば,内球と無限遠から外球(正確には外球殻)へ電荷 Q を移すことになります.
外球殻には内側表面に電荷に +Q' ,外側表面に +Q'' が分布します.
記号は引用された
http://oshiete1.goo.ne.jp/qa3031710.html
に従っています.
内球には -Q',無限遠には -Q'' があることになりますが,
Q' と Q'' の割合は2つの電位差,すなわち外球殻と内球の電位差,および外球殻と無限遠の電位差が
等しくなるように決まります.
内球と無限遠は導線で結ばれていますから電位は同じでないといけないのです.
もし,内球からのみ電荷を外球殻に移しても,
内球と無限遠は導線で結ばれていますから電荷は自由に行き来できるので,
上の条件に従うように勝手に電荷が移動します.
引用された inara さんのご回答はこうやって Q' と Q'' を決めています.

図で表すなら

          │
      ┌───┴───┐
      │       │
      │       │
外球殻内側─┴─     ─┴─外球殻外側
                    
   内球─┬─     ─┬─無限遠
      │       │
      │       │
      └───┬───┘
          │

と思えばよいでしょう.
実際,求めた容量は2つのコンデンサーの容量を合成したものになっていますので,
それもご確認下さい.

「与えた」に余りこだわりすぎると
「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.

わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在するこ...続きを読む

Qテスト勉強でガウスの法則についての問題で分からなくて困ってます…

テスト勉強でガウスの法則についての問題で分からなくて困ってます…
どなたか解答お願いします;;


(1)無限に広い平面に、一様な面密度σで電荷が分布している。面から距離r離れた点における電場をガウスの法則を使って求めよ

(2)半径Rの輪に、一様な面密度λで電荷が分布している。中心軸上で円盤から距離r離れた点Pにおける電場をガウスの法則を使って求めよ


です><
どなたかお願いします…

Aベストアンサー

ガウスの法則∫EdS=Q/εをそのままあてはめればよいかと思います。
ここでE[V/m],微小面積dS[m^2],電荷量Q[C],誘電率ε
(1)無限平面なので電気力線はからまっすぐ外に向かって発生している(と考える)
   ある部分の面積S[m^2]で切り取っても単位面積あたりの電気力線=E[V/m]は一定である。

   ここである微小面積S[m^2]での電気力線数は∫EdS[本]なので
   今電界E[V/m]はS[m^2]によらず一定であることを利用して
   ∫EdS=E*S=σ[C/m^2]*S[m^2]/εより E=σ/ε[V/m]

(2)半径a[m]の円盤上に面密度ω[C/m2]の電界が一様に分布している。
   円盤の中心を通り、円盤に垂直な直線上の電界の求め方・・
   
   http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1113416286
   を参照ください。

参考URL:http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1113416286

ガウスの法則∫EdS=Q/εをそのままあてはめればよいかと思います。
ここでE[V/m],微小面積dS[m^2],電荷量Q[C],誘電率ε
(1)無限平面なので電気力線はからまっすぐ外に向かって発生している(と考える)
   ある部分の面積S[m^2]で切り取っても単位面積あたりの電気力線=E[V/m]は一定である。

   ここである微小面積S[m^2]での電気力線数は∫EdS[本]なので
   今電界E[V/m]はS[m^2]によらず一定であることを利用して
   ∫EdS=E*S=σ[C/m^2]*S[m^2]/εより E=σ/ε[V/m]

(2)半径a[m]の円盤上...続きを読む


人気Q&Aランキング

おすすめ情報