
次のような円環状線電荷分布のつくる電場を求める問題をガウス則を用いて解こうと思った場合には具体的にどのようにすればよいでしょうか?
(問) xy平面上の半径aの円環に線密度λで電荷が一様に分布している場合のz軸上の電場を求めよ
この手の対称性の良くないモデルにおいて電場を求めるにはガウス則は適しておらず、クーロン則と重ね合わせの理を用いて解くべきであるというのは承知した上での質問です。
また、この問以外の対称性の良くないモデルにガウス則を適用するための汎用的な手法があればご教示願います。
No.2ベストアンサー
- 回答日時:
まずガウス則とクーロン則の関係ですが、クーロン則からガウス則を導けます。
ガウス則の支配方程式はラプラス(ポアソン)方程式で、それらを点源に適用すると、再びクーロン則に戻ります。なのでクーロン則とガウス則の違いは、微分法則か積分法則かの違いで、その意味で「対称性の良くないモデルにガウス則を適用するための汎用的な手法」は、#1さんの仰るように、有限要素法とか境界要素法になります。どちらも本質的に積分方程式を用いた解法だからです。
ただしたんにラプラス(ポアソン)方程式を解くだけなら、線形問題(重ね合わせの理が有効)に対しては一番強力で便利な境界要素法を奨めます。ラプラス(ポアソン)方程式の境界要素法は、既に完成されています。
ところで対称性が良いからガウス則を用いる、というのが現実です。ガウス則を手計算で用いるには、等電位面を特定する必要があります。等電位面が対称性から容易に特定できる時、内部電荷量/等電位面面積により、電場が手計算で容易に求まります。
例えば円環が点に見えるくらいじゅうぶん遠く離れた地点での電場は、クーロン則から全方位に対して対称なので、
E=k×2πaλ/(4πr^2)=k/2×aλ/r^2 (1)
※k:誘電率の逆数.
とあっさり求まります。Eの方向はもちろん、中心が円環位置の半径rの球面に垂直です(ただしrは十分大きい)。このような場合には、ガウス則を積極的に使うべきです。
ところでこういう風に具体的に考えてみると、技術的にはガウス則ではなく、対称性をいかに見抜くか、だと思いませんか?。そう割り切って考えると、ガウス則よりクーロン則を用いた方が、より簡単に計算できる場合だってありえます。
電荷が分布する円環の中心が座標原点にあるなら、電場はz軸まわりに回転対称です。そうすると電場の水平方向成分は0とわかります。電場の水平方向成分をEhとすると、ある方向にEhがあるなら、それから180°回った方向にも逆向きにEhがなければなりません。
何故なら「電場はz軸まわりに回転対称」だからです。従ってEh=-Ehで、移項すれば2・Eh=0から、Eh=0です。よってz軸上で電場はz方向成分Ezしか持ちません。その大きさは、円環上の線素dsにある電荷量λ・dsからクーロン則で、
dEz=k×λ・ds/r^2×|z|/r (2)
r=√(a^2+z^2)
とすぐにわかります。円環全体では、「z軸まわりに回転対称」なので、部分部分の線素は(2)と全く同じ寄与です。重ね合わせの理から、dEzを2πa/ds倍すれば良いとなります。
Ez=dEz×2πa/ds=k×(λ・ds)(2πa/ds)/r^2×|z|/r=k×2πaλ|z|/r^3 (3)
r=√(a^2+z^2)
ちなみ(2)(3)で|z|となるのは、Ezはxy平面に対して上下対称だとすぐわかるからです。さらに(式からも明らかですが)、Ehと同じ発想で、z=0でEz=0もわかります。
(問)の対称性は「良い」ですよ。じっさい(1)と(2)(3)の表式を比較して、そんなに大きな手間の違いはないですよね?(^^)。
興味本位で聞いてみたのですが、思った以上に丁寧に解説くださりありがとうございました。お陰様でなかなかに面白い知見を得ることができました。

No.1
- 回答日時:
無理じゃない。
ガウスの法則を使う場合、面積分もしくは体積分をしなければならないんだから。
しかも、その被積分関数E(ベクトルです)が分からないんだし。
☆また、この問以外の対称性の良くないモデルにガウス則を適用するための汎用的な手法があればご教示願います。
◇これにこだわるならば、ラプラス方程式を解くことになるんじゃない。
これも、すこし複雑になると、解析解を求めるのは絶望的になります。
あるいは、
有限要素法や境界要素法などを用いた数値計算。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 電磁気 コンデンサ (1)εA/d (2)0<x≦d 電場は左向きである。 E(x)=-q/εA ( 4 2023/05/15 02:23
- 物理学 電磁気です この問題の電場を求める方法が分かりません ご教示ください z 軸を中心軸として半径 a 1 2023/06/23 11:45
- 物理学 物理の問題 1 2022/12/20 13:33
- 工学 至急お願いします。 真空中に、電極間距離dの平行平板コンデンサがある。平板1にσの電荷密度、平板2に 2 2022/07/31 19:06
- 物理学 写真のようにながさlの直線上に電荷が線電荷密度λで分布している時の×のところ(R>l/2)の電位を求 1 2022/08/09 12:10
- 物理学 クーロンの法則 2 2023/01/30 13:45
- 物理学 電磁気学とガウスの法則 2 2022/12/22 07:02
- 物理学 (1)はr>a のときはE=λ/2πaε r<aのときは電荷は表面に分布するからQ=0 E=0 (1 3 2023/04/14 17:35
- 工学 電磁気学の問題です。回答お願いします。 半径 b [m]の球状の電子雲がある。球内での電荷分布は一様 2 2022/05/17 00:09
- 物理学 正電荷が一様に分布した円盤が、円盤の軸線上のある1点につくる電場を求めるとき、円盤の各微小面積がつく 3 2022/11/27 11:02
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
電磁気学に関しての問題です。
-
【物理】 一様な電場とあるので...
-
コンデンサーの極板間に誘電体...
-
プラズマ周波数
-
物理の問題で分からない問題が...
-
面積分
-
ダイオードに逆電圧を加えた時...
-
真空中以外のガウスの法則について
-
クーロンの法則について
-
電磁波の電場と磁場の振動方向...
-
導電率(電気伝導率)には実部...
-
円柱を一様電場の中に
-
電磁気の問題です。 一様ば表面...
-
写真の問題についてですが、「Q...
-
この電磁気学の問題を解いてく...
-
E面とH面の指向性
-
図のような単振り子について。 ...
-
コンデンサー 極板間の電場の強...
-
ワイヤーグリット型偏光子の原...
-
二つの誘電体からなる円筒の静...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
【物理】 一様な電場とあるので...
-
電磁気学に関しての問題です。
-
ラプラシアンの物理的な意味
-
表面に一様に帯電した球の電位...
-
電磁波の実験
-
導体球殻の電位
-
電気双極子モーメントの問題に...
-
ローレンツ力とアンペール力に...
-
コンデンサーの極板間に誘電体...
-
向かい合っていない板の静電容量
-
電磁気力は光子が媒介する?
-
ワイヤーグリット型偏光子の原...
-
写真の問題についてですが、「Q...
-
コンデンサー 極板間の電場の強...
-
光の侵入長の計算
-
電磁気の問題です。お願いします。
-
光は本当に横波?
-
静電場の水への影響
-
高校物理の「一様な電場」につ...
-
ベクトルポテンシャル場はエネ...
おすすめ情報