グッドデザイン賞を受賞したウォーターサーバー >>

2点集中荷重片持ち梁の曲げモーメントとたわみ量の計算について教えてください。
検討部材としましては、H鋼材です。
ご指導を宜しくお願いいたします。

「2点集中荷重片持ち梁について」の質問画像

このQ&Aに関連する最新のQ&A

A 回答 (2件)

これは数式で回答する問題なのでしょうか?


相当煩雑になります。

元々は多分数値計算する問題であったのではないでしょうか。

いずれにせよ、P1荷重のみでのモメントとたわみ、P2荷重のみでのモメントとたわみを合算すればよい。
    • good
    • 0

 梁に沿って、先端からの距離をxとします。

図から、荷重の分布は
  w(x) = (P1)δ(x-a) + (P2)δ(x-(a+b))
(ただしδはディラックのデルタ関数。つまり範囲(a,b)についての定積分 (a<b)が
  ∫(x=a~b) δ(x) dx = (a < 0 < bなら1、b<0かa>0なら0)
であるようなモノです。)
 wを積分すれば剪断力の分布
  f(x) = ∫{t=0~x) w(t)dt
であり、実際にやってみると
  f(x) = (x<aのとき0、a<x<bのときP1, b<x<cのとき、P1+P2)
です。f(x)のグラフ(xを横軸、f(x)を縦軸にしたグラフ)は2段の階段状になりますね。
 fをさらに積分したのが曲げモーメントの分布
  m(x) = ∫{t=0~x) f(t)dt
であり、m(x)のグラフは途中で傾きが2度変わる折れ線。
 mをさらに積分して係数(1/(EI))(EIは曲げ剛性)を掛けると、たわみ角の分布
  i(x) = (1/(EI))∫{t=0~x) m(t)dt
が得られ、そのグラフは3つの二次曲線が滑らかに繋がった形。
 さらにその積分がたわみ量の分布
  y(x)= ∫{t=0~x) i(t)dt
であり、そのグラフは3つの三次曲線が滑らかに繋がった形(三次スプライン曲線)。

 曲げ剛性EIは材料と断面形状とどっち向きに荷重を掛けるかで決まる。「H鋼材」というだけじゃ情報不足でどうにもなりません。
    • good
    • 2

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q2点集中荷重の計算について教えてください。

2点集中荷重の計算について教えてください。
片側がピン支持、もう片方が固定支持の梁に
2点集中荷重P1、P2があります。
P1、P2ともそれぞれの端部からの距離は同じです。
この場合の各点の曲げモーメント、最大曲げモーメント
せん断力の計算方法がわかりません。
宜しくお願い致します。

Aベストアンサー

次のページに1点荷重の公式がありますから、
http://www.geocities.jp/iamvocu/Technology/kousiki/kousiki-kouzouhari/kousikikouzouhari.html

P1,P2 それぞれについてM,Q,をもとめて足し算すればよいです。

Q両端支持梁に集中荷重(2か所)の場合の最大応力

両端支持の梁に2か所の集中荷重が印加された場合の
最大応力σmaxを求める計算方法に関する質問です。

添付図の様に対称位置では公式集にある様な下記の式で求められる事が判りました。

σmax = ( (Pal^2)/24EI ) * ( 3 - 4*(a^2/l^2) )

P:荷重 l:梁長さ a:梁端部から荷重点間距離
b:2荷重点間距離 E:梁ヤング率 I:梁断面2次モーメント

質問: この2箇所の荷重点が 間隔 b を保ったまま 左右に僅かにずれた場合
     (右のa≠左のa になった場合)
    最大応力は計算式で求める事が出来ますでしょうか?

どうぞよろしくお願いします。

Aベストアンサー

右側のaをcに置き換えて計算しました。aとcをa+b+c=Lの条件で変えて、数値計算はしてください。 公式集で調べた最大応力の式は、たわみではないでしょうか。

Q2点支持片側張り出し梁の荷重計算を教えてください。

A支持点からB支持点----500mm
B支持点から張り出し----50mm
張り出し部先端に150Kgの荷重をかけた時
支持点A、Bに掛かる荷重の計算式を教えてください。
又、エクセルを使用してやる、やり方もお願いします。

宜しくお願いします。

Aベストアンサー

http://homepage2.nifty.com/Pixy/calchtml/index.html

http://homepage2.nifty.com/Pixy/calchtml/routine/06/iso/0600.html

http://homepage2.nifty.com/Pixy/calchtml/routine/06/iso/0601.html
で、計算できます。

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Q最大曲げモーメント公式 Mmax=wl²/8 

(左支持荷重×距離)-(左半分荷重×左半分荷重重心)
(P/2×L/2)-(P/2×L/4)
=PL/4-PL/8
=PL/8

どうして(左支持荷重×距離)から(左半分荷重×左半分荷重重心)を引くのか分かりません。教えてください。

Aベストアンサー

まず、この問題は図1のようにスパンLの単純ばりに等分布荷重wが作用しているときの最大曲げモーメントMmaxを求めるものだと思います。

応力の前にまず反力を求めますが、反力を求めるには、等分布荷重wを集中荷重Pに直してスパン中央に作用させます。これが図2となり、集中荷重Pの大きさはwLとなります。また、反力はPの半分ずつでP/2となります。

最大曲げモーメントは、スパン中央で生じるので、スパン中央で切断して考えますが、図2の反力を求める図を切断して考えると質問者さんのような疑問が生じるのだと思います。

最大曲げモーメントを求めるには、図1の等分布荷重を作用している状態でスパン中央で切断して考えます。これが図3となり等分布荷重が作用している状態となります。

切断した部分の等分布荷重wを集中荷重に置き換えると、図4のようにP/2となり、スパンの半分の半分の位置、つまりL/4の位置に作用することとなります。ここで、スパン中央を中心としてモーメントのつりあいを考えると、質問者さんの式が導き出されます。

Mmax=P/2×L/2-P/2×L/4
=PL/4-PL/8
=PL/8

なお、P=wLより、最大曲げモーメントの公式 Mmax=wL^2/8 となります。

「計算の基本から学ぶ建築構造力学」(著者 上田耕作、オーム社)、
「ズバッと解ける!建築構造力学問題集220」(著者 上田耕作、オーム社)を参考にしました。

参考URL:http://ssl.ohmsha.co.jp/cgi-bin/menu.cgi?ISBN=978-4-274-20856-0

まず、この問題は図1のようにスパンLの単純ばりに等分布荷重wが作用しているときの最大曲げモーメントMmaxを求めるものだと思います。

応力の前にまず反力を求めますが、反力を求めるには、等分布荷重wを集中荷重Pに直してスパン中央に作用させます。これが図2となり、集中荷重Pの大きさはwLとなります。また、反力はPの半分ずつでP/2となります。

最大曲げモーメントは、スパン中央で生じるので、スパン中央で切断して考えますが、図2の反力を求める図を切断して考えると質問者さんのような疑問...続きを読む

Q両端固定はりのせん断力と曲げモーメント

図のような固定はりのせん断力、曲げモーメントを求め、たわみ角、たわみ、SFD、BMDを求めたいです。
重ね合わせ法で解こうと思いましたが、荷重がどちらか片方だけ作用している時のせん断力、曲げモーメントをどのように考えるのかわかりません。

Aベストアンサー

 C点またはD点の荷重効果を別々に計算して足せば良い、とわかっているなら、次のURLで答えは出ます(^^)。

  http://www.geocities.jp/iamvocu/Technology/kousiki/kousiki-kouzouhari/kousikikouzouhari-04-01.html

 以下は、どうしてもという事であれば、という内容です(^^;)。


 構造力学の一般的手順では、最初に全体系の力の釣り合いから反力を求め、後は反力から部材力をたどって行って、SFDやBMDを計算します。しかし両端固定梁の場合、力の釣り合いだけからは反力を全部求めきれない。問題図で水平力が無いのは明らかですが固定端なので、左右でそれぞれモーメント反力と鉛直反力が現れ、全部で4個になる。ところが力の釣り合い方程式は、水平力が片付いているので実質2本しかない。未知数が2個余る。こんな状況だと思います。

 余り2個の反力を計算する代表的な方法は、4つあります。
  1)曲げを受ける梁の微分方程式
  2)カスティアノの定理
  3)仮想働の原理
  4)たわみ角法

 4)は応用性に乏しいので、ここでは省略します。それでまず1)です。


1))曲げを受ける梁の微分方程式
 曲げを受ける梁の微分方程式は、

  EI・(d^4w/dx^4)=q(x)    (1)

です。xはたいてい梁の左端を0にしたりします。Eはヤング率,Iは断面2次モーメントです。q(x)は横方向の分布中間荷重です。ここでは問題図のC点の荷重についてのみ考えます。そうするとAC間,CB間には中間荷重がないので(q(x)=0)、(1)からそれぞれ、

  w1(x)=A1・x^3+B1・x^2+C1・x+D1
  w2(x)=A2・x^3+B2・x^2+C2・x+D2

が得られます。w1はAC間の梁の鉛直方向の変位曲線,w2はCB間の変位曲線を表し、A1,B1,C1,D1とA2,B2,C2,D2は、それぞれに対する積分定数で未知です(つまりこれら8個が未知数です)。

 たわみ角はdw/dxで、BMDはEI・d^2w/dx^2で、SFDは-EI・d^3w/dx^3では求められるので、8個が未知数に対する条件は、

  左端固定条件
   w1(0)=0                     :Aで変位0
   dw1/dx(0)=0                  :Aでたわみ角0

  C点での接続条件
   w1(L/3)=w2(0)                 :Cで変位連続
   dw1/dx(L/3)=dw1/dx(0)           :Cでたわみ角連続
   d^2w1/dx(L/3)=d^2w2/dx(0)         :Cで曲げモーメント連続
   -d^3w1/dx(L/3)-W=-d^3w2/dx(0)   :Cでのせん断力の釣り合い

  右端固定条件
   w2(2L/3)=0                   :Bで変位0
   dw2/dx(2L/3)=0                :Bでたわみ角0

と8個になり、頑張って解けば、A1,B1,C1,D1とA2,B2,C2,D2は全部求まります。求まれば、BMDはEI・d^2w/dx^2で,SFDは-EI・d^3w/dx^3で、・・・です(^^;)。


 次に2)は後にして3)仮想働の原理ですが、この辺で力突きました。

 明日また回答するかも知れませんが、1)~4)のいずれを使おうと、計算は大変です。最初のURLをお奨めします(^^;)。

 C点またはD点の荷重効果を別々に計算して足せば良い、とわかっているなら、次のURLで答えは出ます(^^)。

  http://www.geocities.jp/iamvocu/Technology/kousiki/kousiki-kouzouhari/kousikikouzouhari-04-01.html

 以下は、どうしてもという事であれば、という内容です(^^;)。


 構造力学の一般的手順では、最初に全体系の力の釣り合いから反力を求め、後は反力から部材力をたどって行って、SFDやBMDを計算します。しかし両端固定梁の場合、力の釣り合いだけからは反力を全部求めきれない。問題図で水...続きを読む

Qたわみ計算(2点集中荷重/両端支持梁)

   (a)       (b)
    ↓       ↓
------------------------(丸棒(S35C)φ20mm)  
△               △
Ra                Rb

(a)・・・10kg
(b)・・・20kg

S35Cの縦弾性係数E=2.1x10^4(kgf/mm^2)
密度7800kg/m^3

Ra~Rbの長さ1000mm
Ra~(a)点まで300mm
(a)~(b)点まで450mm

(a)点および(b)点のたわみはどう求めるのですか?
材料力学の初心者です。

助けて下さい。

Aベストアンサー

まず、与条件を整理します。
図のはりのA点とB点のたわみを求める【問題】ですね。ここで、計算の単位は全てkgとmmで進めます。
(本当は力の単位はN<ニュートン>に直したいのですが、このまま進めます)

・丸棒の断面二次モーメントを計算します。
 I=π×20^4/64=7 850 mm^4
・丸棒の自重を等分布荷重ωとして計算します。
 ω=π×10^2×1×7 800/1 000^3=0.00245 kg/mm
・丸棒のヤング係数
 E=21 000 kg/mm^2 

(1)丸棒の自重によるたわみの計算
【公式1】より求めます。
<A点>ζ=χ/l=300/1000=0.3より、
      y=0.2 mm
<B点>ζ=χ/l=750/1000=0.75より、
      y=0.1 mm

(2)P=10kgだけがA点に作用したときのたわみの計算
【公式2】より求めます。
<A点>a=300、b=700、l=1 000、χ=300より、
      y=0.9 mm
<B点>a=300、b=700、l=1 000、χ=750より、χ≧a のときの式を使って、
      y=0.6 mm

(3)P=20kgだけがB点に作用したときのたわみの計算
同じく【公式2】より求めます。
<A点>a=750、b=250、l=1 000、χ=300より、
      y=1.3 mm
<B点>a=750、b=250、l=1 000、χ=750より、
      y=1.4 mm

【結果】(1)~(3)のたわみを合計します。
<A点> y=0.2+0.9+1.3=2.4 mm
<B点> y=0.1+0.6+1.4=2.1 mm

A点のたわみは2.4 mm、B点のたわみは2.1 mmと計算できました。

【公式1】と【公式2】については、「構造力学」(吉田俊弥・著 朝倉書店)より、引用しました。
また、計算の進め方については、「計算の基本から学ぶ 建築構造力学」(上田耕作・著 オーム社)を参考にしました。

参考URL:http://ssl.ohmsha.co.jp/cgi-bin/menu.cgi?ISBN=978-4-274-20856-0

まず、与条件を整理します。
図のはりのA点とB点のたわみを求める【問題】ですね。ここで、計算の単位は全てkgとmmで進めます。
(本当は力の単位はN<ニュートン>に直したいのですが、このまま進めます)

・丸棒の断面二次モーメントを計算します。
 I=π×20^4/64=7 850 mm^4
・丸棒の自重を等分布荷重ωとして計算します。
 ω=π×10^2×1×7 800/1 000^3=0.00245 kg/mm
・丸棒のヤング係数
 E=21 000 kg/mm^2 

(1)丸棒の自重によるたわ...続きを読む

Q鋼板の曲げ応力について

初心者です

壁に厚さ32mm 幅150mm 長さ515 の鋼板があります
壁に片方を付け、反対側に10knの力をかけるとゆう作業なのですが、
10knでもつのか、またどの位の力までもつのか知りたいのですが算定のしかたが分かりません

宜しくお願いします

Aベストアンサー

図のような荷重状態を想定しました。
また、鋼材の材質が指定されてないので、一般的なSS400(一般構造用鋼材)を想定します。
SS400の許容曲げ応力度fb=156N/mm2、また、許容せん断力fs=90.4N/mm2とします。
なお、計算はNとmmで進めます。
(1)曲げに対する検討
最大曲げモーメントM=PL=10,000×515=5,150,000N・mm
断面係数Z=bh2/6=150×32×32/6=25,600mm3
曲げ応力度σb=M/Z=5,150,000/25,600=201N/mm2>fb=156N/mm2
∴許容曲げ応力度を超えているので安全とはいえません。(もたないです)
では、何kNまでならOKかと逆算すると,
P×515/25,600=156
P=7,754N
∴7.7kNまでなら計算上はOKとなります。
このとき,せん断に対しては,
せん断応力度τ=P/A=7,700/150×32=1.6N/mm2≦fs=90.4N/mm2
∴せん断に対しても安全といえます。
(注)SS400の材料自体の計算例を示しましたが、これ以上に壁に対する固定方法のチェックもお忘れなく。

参考文献:計算の基本から学ぶ 建築構造力学 上田耕作 オーム社

図のような荷重状態を想定しました。
また、鋼材の材質が指定されてないので、一般的なSS400(一般構造用鋼材)を想定します。
SS400の許容曲げ応力度fb=156N/mm2、また、許容せん断力fs=90.4N/mm2とします。
なお、計算はNとmmで進めます。
(1)曲げに対する検討
最大曲げモーメントM=PL=10,000×515=5,150,000N・mm
断面係数Z=bh2/6=150×32×32/6=25,600mm3
曲げ応力度σb=M/Z=5,150,000/25,60...続きを読む

Q3点集中荷重の最大曲げ応力の計算式を教えてください

足場架設用の仮設鋼台の強度計算をしているのですが、最大曲げ応力の計算の仕方がわかりません。

P=1,169kg

3点集中荷重の計算の公式は、A=L/4の時

Mmax=PL/2

この公式は今回のケースでも当てはまるのでしょうか?




強度計算、材料力学については全くの素人で、毎日参考文献を調べながら計算しています。

どなたかお力添えを宜しくお願い致します。

Aベストアンサー

まず、応力図(Q図、M図)を書きます。
Q図は、左側から反力と荷重を力の矢印の通りに上下させて描きます。
M図は、単純ばりに集中荷重が作用した場合は、ピンと張ったゴムひもが荷重に押された形を想像すると良いでしょう。
ここで、Q図とM図は連動しており、ある点のMの値は、その点までのQ図の面積を計算することで求められます。
このあたりは、「計算の基本から学ぶ 建築構造力学」および「ズバッと解ける!建築構造力学問題集220」(いずれもち上田耕作・著 オーム社)に分かり易く解説されています。

>3点集中荷重の計算の公式は、A=L/4の時
>Mmax=PL/2
>この公式は今回のケースでも当てはまるのでしょうか?

応力図(1)より、スパン中央でMmaxは生じるので、Q図の面積を計算すると、
Mmax=3P/2×L/2-P×L/4=PL/2となります。
しかしながら、これは公式とはいうほどのものではありませんし、
この場合は、等間隔(L/4)に作用していないので使えません。

ここでは、応力図(2)によって、Q図の面積からMmaxを求めます。
反力V=3×1169/2=1753.5
Mmax=1753.5×2.710-1169×1.499=2999.7 kg・m
∴Mmax=2999.7 kg・m

これまで、計算はkgとmで進めましたが、例えば、建築の場合、許容応力度の単位に合わせて、Nとmmで進めるのが良いでしょう。なお、1kgは約9.8Nとなります。

参考URL:http://ssl.ohmsha.co.jp/cgi-bin/menu.cgi?ISBN=978-4-274-20856-0

まず、応力図(Q図、M図)を書きます。
Q図は、左側から反力と荷重を力の矢印の通りに上下させて描きます。
M図は、単純ばりに集中荷重が作用した場合は、ピンと張ったゴムひもが荷重に押された形を想像すると良いでしょう。
ここで、Q図とM図は連動しており、ある点のMの値は、その点までのQ図の面積を計算することで求められます。
このあたりは、「計算の基本から学ぶ 建築構造力学」および「ズバッと解ける!建築構造力学問題集220」(いずれもち上田耕作・著 オーム社)に分かり易く解説されて...続きを読む

Q台形の重心を求めるには

上底a 下底b 高さ h とした場合、台形の重心をもとめる公式は、 (2a+b)/(a+b)*h/3 でよろしいでしょうか?

Aベストアンサー

計算してみました。
面積
 A=(a+b)h/2
下底周りの断面一次モーメント
 S=a・h^2/2 + (b-a)h^2/6
  =h^2(2a+b)/6

重心位置、S/Aですから、
 G=(2a+b)/(a+b) ・ h/3

合ってますね。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング