No.2ベストアンサー
- 回答日時:
a(n)の漸化式をつくりそれを解くことを考えます。
a(n+1)、これは(n+1)回目にPが偶数座標にある確率ですが、これをa(n)、つまりn回目にPが偶数座標にある確率を使って表すことを考えます。
Pが(n+1)回目に偶数座標にあるのは、n回目まにで偶数座標にあって(n+1)回目に5以上の目が出る場合か、n回目までに奇数座標にあって(n+1)回目に4以下の目が出る場合、のどちらかです。
したがって、これらの関係は、
a(n+1)=2/6*a(n)+4/6*(1-a(n))
となります。(ここでn回目に奇数座標にある確率は1-a(n)であることを使っています。)
これが漸化式となり、これを解いて答えです。
No.1
- 回答日時:
一つ手前の偶数にある状態(これをa[n-1]とする)からPの座標が偶数になる確率a[n]の状態になるための場合を考える・・! (a[0]は原点にいる状態と考える)
1.a[n-1]の状態でn回目に5か6の目が出る
2.(n-1)回目の状態でPが奇数でn回目に1か2か3か4の目が出る
の何れかである・・!
これを漸化式に置き直せばよい・・!
後は漸化式を計算・・!
答えは;a[n] = (1/2)・{1-(-1/3)^(n-1)}-(-1/3)^n (計算間違えが無ければ・・!?)
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 そこにいる確率。 5 2023/05/30 13:37
- 数学 正五角形の頂点を反時計回りにabcdeとする。二つの動点r、wが、rは頂点aを、w頂点cを出発して次 3 2022/07/22 11:40
- 数学 【 数Ⅰ 反復試行 】 問題 x軸上を動く点Aがあり、最初は原点にある。硬貨を投げて表が出たら正の方 4 2022/09/29 17:43
- 数学 【 数Ⅰ 反復試行 】 ※以前に質問した問題と似ていますが違う問題です 問題 x軸上を動く点Aがあり 1 2022/09/29 17:47
- 数学 最初に1の目が上面にあるようにサイコロがおかれている。 その後、4つの側面から1つの面を無作為に選び 2 2023/01/18 09:54
- 数学 数学A確率の問題がどうしてもわからないです。 一個のサイコロを投げたとき、3の倍数の目が出る確率は 5 2023/02/23 17:25
- 統計学 統計学の問題です。よろしくお願いします。 あるサイコロを3回投げると,1の目が2回出た。 1の目が出 4 2023/01/19 15:21
- 統計学 統計学の問題です。よろしくお願いします。 あるサイコロを3回投げると,1の目が2回出た。 1の目が出 8 2023/01/19 03:37
- 数学 至急!!大学2年の女子です。この高校レベルの問題が分からないので教えてください!お願いしますm(_ 2 2022/11/11 22:10
- 数学 1から6が等しい確率で出るサイコロを使ってすごろくを行う。あがりのnマス手前からぴったりあがることが 3 2022/07/02 17:00
このQ&Aを見た人はこんなQ&Aも見ています
-
10代と話して驚いたこと
先日10代の知り合いと話した際、フロッピーディスクの実物を見たことがない、と言われて驚きました。今後もこういうことが増えてくるのかと思うと不思議な気持ちです。
-
一番最初にネットにつないだのはいつ?
ネットユーザーもいろんな世代が生まれていますが、始めて接続したときのワクワクは同じはず! 人生で一番最初にネットに接続したときの思い出を教えて下さい。
-
モテ期を経験した方いらっしゃいますか?
一生に一度はモテ期があるといいますが、みなさんどうですか? いまがそう! という方も、「思い返せばこの頃だったなぁ」という方も、よかったら教えて下さい。
-
食べられるかと思ったけど…ダメでした
「この煮物、だいぶ放置しちゃったけど大丈夫かな…」 「食べ物じゃないけど、なんか食べたらすごく美味しそうな気がする」
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
高校数学の問題です。 次の問題の答えを教えてください。 原点を出発して数直線上を動く点Pがある。 さ
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「黒歴史」教えて下さい
- ・2024年においていきたいもの
- ・我が家のお雑煮スタイル、教えて下さい
- ・店員も客も斜め上を行くデパートの福袋
- ・食べられるかと思ったけど…ダメでした
- ・【大喜利】【投稿~12/28】こんなおせち料理は嫌だ
- ・前回の年越しの瞬間、何してた?
- ・【お題】マッチョ習字
- ・モテ期を経験した方いらっしゃいますか?
- ・一番最初にネットにつないだのはいつ?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
座標(x,y)間(=2点)の...
-
重分積分の極座標変換について
-
なぜベクトルの外積の向きが右...
-
「原点に返る」と「原点に戻る...
-
2点からその延長線上にある点の...
-
【数学】 解説の下から4行目が...
-
ベクトル 図形
-
「0でない2つのVのベクトルu,v...
-
道順組み合わせの最短距離有無...
-
円の中心座標ってもとめられま...
-
座標のS/I方向について
-
円の中心座標の問題の解き方を...
-
グラフが異なる2点でX軸の正の...
-
三点を通る円の中心座標と半径...
-
数学の、確率と漸化式の問題です。
-
大学の複素数の問題なんですが...
-
2つの二次関数の交点x座標は ...
-
回転した座標の計算方法について
-
エクセルを用いた3次元座標変換
-
直交座標、斜交座標
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
座標(x,y)間(=2点)の...
-
右下の小さい数字について
-
重分積分の極座標変換について
-
「原点に返る」と「原点に戻る...
-
距離と方向角から座標を求める...
-
等角螺旋(らせん)の3次元的...
-
三角関数 範囲が-πからπのとき...
-
距離、方位角から座標を求める方法
-
測量座標と算数座標の違い
-
エクセルでグラフの作り方 軌...
-
複素数平面と座標平面の対応に...
-
複素数平面についてです ①xy平...
-
極座標と直交座標の変換について
-
なぜベクトルの外積の向きが右...
-
楕円の角度とは?
-
空間上の測定された点群から最...
-
「0でない2つのVのベクトルu,v...
-
2点からその延長線上にある点の...
-
複数の点(x,y)を通る曲線を,指...
-
外積が右ねじの向きであること...
おすすめ情報