
辺の長さが3の正四面体ABCDの外接球の半径を求める数学の問題の解説で、
『外接球の中心をO、Aから底面BCDに下ろした垂線の足をHとしたとき
①AB=AC=AD
かつ②OB=OC=ODであるから対称性よりA、O、Hは同一直線上にある』
とあるのですが、①AB=AC=ADかつ②OB=OC=ODが言えると、なぜA、O、Hが同一直線上になるのかが分かりません。(感覚的にはわかるのですが…)
他の知恵袋等、インターネットで調べたところ、上記の対称性は回転対称性の事ではないか?という解答を見つけましたが、それはつまり
『①AB=AC=ADから言える事は、正四面体だから、各辺の長さが同じで、直角三角形の斜辺と他の一辺が等しいからBH=CH=DHとなりHは△BCDの外心と一致し、120°、240°と回転させると元の正四面体と重なる。
また、②OB=OC=ODから言えることは、Oは外接球の中心でありAOを軸に回転させると元の正四面体と重なる。』
という事であり、
結果、(正四面体の1つの頂点から考えて)同じように回転させて正四面体が一致する軸は1つしかなく、A、O、Hは同一直線上にあると言える、という理解で間違いないでしょうか?
また、正四面体の1つの頂点からの垂線上に、外接円の中心は存在するという事実は、問題を解く上で前提としても問題ないのでしょうか?
長く、分かりにくく申し訳ありません。ご回答、よろしくお願い致します。


No.1ベストアンサー
- 回答日時:
あまり難しく考えずに, 外接球の中心 O を xyz 座標空間の原点に, A を z 軸上の正の部分に取り,
それに合わせて B, C, D の座標を定めてはどうでしょうか.
添付画像のとおりに見やすくするなら, B の x 座標は正で y 座標は負, としていいでしょう.
あとは数式計算により, H が z 軸上にあることを証明するだけです.
この問題は, ことばは悪いですが「ただの計算問題」なので,
対称性とか回転を本格的に調べるのは, 出題の趣旨から外れるような気がします.
計算問題ということを考えれば, A, O, H が同一直線上にあることに関しては,
「対称性」ということばだけ添えて言及すればよく, 証明せずに使っても減点されないと思います.
No.2
- 回答日時:
四面体の外接球の中心は各辺の垂直二等分面の共有点となります。
(これがわからないようでしたら三角形の外接円について考えてみるとよいでしょう)
BCの垂直二等分面とBDの垂直二等分面を考えてみましょう。
この二つの面の共有点は直線となります。上記のことから外接球の中心はこの直線上に位置します。
この二つの面の交線がAHと一致することからOがAH上にあることが言えます。
このことを示すには
(1)AがBC,BDの両方の垂直二等分面に含まれる。
(2)二つの垂直二等分面の交線が面BCDに垂直である。
であればよいのです。
(1)は垂直二等分面の性質を考えれば簡単。
(2)も簡単に示せます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 中学校 OA=OB=OC=AB=AC=1、 ∠BOC=90°となる四面体OABCの 辺OA上に点DをOD:D 4 2022/10/11 10:07
- 数学 AB=2,BC=3,∠ABC=60°の三角形がある。 点Aから辺BCに垂線を下ろし辺BCとの交点をD 4 2023/02/02 15:55
- 数学 正八面体の8面を、7色A~Gで塗り分ける方法は何通りあるか(隣り合う面は同じ色でもいいが、回転して一 1 2022/08/04 23:06
- 数学 数検2級のの記述問題の際 正四面体の一つの頂点から底面に対して垂線を下ろしたとき、底面の重心と垂線の 3 2023/07/20 13:55
- 大学受験 正四面体の外接球の半径Rと内接球の半径rを求める問題です。 (3)の答えの「正四面体の対称性よりKL 1 2023/07/20 13:41
- 数学 写真の数学の質問です。 「 BCD の重心をG とおくと, 正四面体の対称性 により、半径Rの外接球 1 2023/07/19 15:00
- 数学 三角形ABCの辺BCを4 : 3に内分する点をTとし、点Tを接点として辺BCに接する円が点Aで直線A 3 2023/02/12 21:03
- 物理学 電磁気学の問題がわかりません。 3 2023/07/20 22:13
- 数学 数学の質問です。 円に内接する四角形ABCD において, AB=2, BC = 1, CD = 3, 3 2023/04/18 18:28
- 数学 四角すいの表面積…難問?助けてください。 8 2022/10/04 20:11
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
座標(x,y)間(=2点)の...
-
2次関数y=ax^2のグラフは点A(4,...
-
「原点に返る」と「原点に戻る...
-
右下の小さい数字について
-
なぜベクトルの外積の向きが右...
-
数学の軌跡についての問題です...
-
二次関数 (2)のAB=2√3である...
-
2点からその延長線上にある点の...
-
数学II 図形と方程式です。 解...
-
クラメールのパラドックス、独...
-
座標のS/I方向について
-
N点間の中心と重心の求め方
-
任意の2質点間の距離が一定であ...
-
3次元での回転による座標変換
-
正四面体ABCDの頂点からおろし...
-
回転した座標の計算方法について
-
斜距離の算出公式はありますか?
-
二次関数に内接する長方形の問...
-
座標を回転させる計算方法を教...
-
三次元直交座標と極座標の関係
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
座標(x,y)間(=2点)の...
-
「原点に返る」と「原点に戻る...
-
右下の小さい数字について
-
測量座標と算数座標の違い
-
距離と方向角から座標を求める...
-
距離、方位角から座標を求める方法
-
等角螺旋(らせん)の3次元的...
-
2次関数y=ax^2のグラフは点A(4,...
-
二次関数 (2)のAB=2√3である...
-
対数螺旋の方程式と書き方について
-
2点からその延長線上にある点の...
-
楕円の角度とは?
-
斜距離の算出公式はありますか?
-
AB=2である2定点A、Bに対して...
-
楕円の円周上の座標を求める計...
-
複素数平面と座標平面の対応に...
-
なぜベクトルの外積の向きが右...
-
重分積分の極座標変換について
-
三角関数 範囲が-πからπのとき...
-
「0でない2つのVのベクトルu,v...
おすすめ情報