第一象限内にあって二つの曲線y=x^2 -1 , x^2+y^2+2√3y-1=0と二つの直線
y=3,x=0
とで囲まれる図形をDとする。

(1)Dの面積を求めよ。

(2)Dをy軸に関して一回転して
得られる回転体の体積を求めよ。

この問題がまったくわかりません。
わかりやすく教えてください

このQ&Aに関連する最新のQ&A

台形 体積」に関するQ&A: 台形の体積

A 回答 (3件)

x^2+y^2+2√3y-1=0 より


x^2+(y+√3)^2=4
中心 (0,-√3)、半径 2

(1) 図のように、点Pから点Uをとると、
(Dの面積)=(台形PQRTの面積)-(おうぎ形PQUの面積)+(図形QRSの面積)
ここで、
(台形PQRTの面積)=1/2×{3+(3+√3)}×1=3+(√3/2)

△OPQは、OP:PQ:QO=√3:2:1 だから
∠OPQ=30°
よって、
(おうぎ形PQUの面積)=π×2^2×(30/360)=π/3

(図形QRSの面積)=∫[1→2]{3-(x^2-1)}dx=∫[1→2](4-x^2)dx
=[4x-(1/3)x^3][1→2]={8-(8/3)}-{4-(1/3)}=5/3

したがって、
(Dの面積)=3+(√3/2)+π/3+5/3=(28+3√3+2π)/6


(2)(求める体積)=(図形OQRTをy軸まわりに1回転した体積)-(図形OQUをy軸まわりに1回転した体積)
ここで、
(図形OQRTをy軸まわりに1回転した体積)
=∫[0→3]πx^2dy
=π∫[0→3](y+1)dy
=π{(1/2)y^2+y}[0→3]
=π{(9/2)+3}
=(15/2)π

(図形OQUをy軸まわりに1回転した体積)
=∫[0→2-√3]πx^2dy
=π∫[0→2-√3](-y^2-2√3y+1)dy
=π{-(1/3)y^3-√3y^2+y}[0→2-√3]
=-π{(1/3)(2-√3)^3+√3(2-√3)^2-(2-√3)}
=-π{(1/3)(8-12√3+18-3√3)+√3(4-4√3+3)-2+√3}
=-π{(26/3)-5√3+7√3-12-2+√3}
=-π{-(16/3)+3√3}
={(16/3)-3√3}π

したがって、求める体積は、
(15/2)π-{(16/3)-3√3}π={(13/6)+3√3}π

になるのではないでしょうか。
「第一象限内にあって二つの曲線y=x^2 」の回答画像3
    • good
    • 0

難しい、、、分かりません(;´Д`)

    • good
    • 0

解いてませんが、


この問題が解らないのか、この問題以前の所からさっぱり解らないのか、明確にして下さい。
この問題が解らないなら、どこまでのことをやってみて、どこから解らないのか、明確にして下さい。
なお、x^2+y^2+2√3y-1=0が円の方程式だということに気付いているでしょうか?

教科書の、積分とは、という辺りで、幅がΔxの短冊というか台形というか、それを積み重ねていく、という話があったと思います。
基本はその通りで、短冊を積み重ねていくのです。
幅がΔxの短冊を考えるのであれば、短冊の高さの式がどうなるのかを出せばいい。
短冊の高さかけるΔx、で短冊の面積が表せます。
それを、インテグラルしてやる、積み重ねてやると(短冊の高さの式をf(x)とすると)、
∫f(x)dx
となるのです。ここからはどこかで見たことがあるでしょう。
後はこれを計算してやればいい。
短冊の高さはどうなっているのか!式で表せ!ってことでしょう。

回転体は、短冊の代わりに、千切りの大根みたいな物を想像すると良いでしょう。
幅がΔyの短冊、ではなく薄切りたくあん。
薄切りたくあんの面積の式は何か。
回転体ですから円ですよね。円の面積は、半径の二乗かけるπ。
つまり、半径の式は何か、って事です。
ただし、おそらく中空になるんでしょう。ドーナツ状。
外側の円から内側の円の面積を引いてやればいい。
そして同様に、その面積×Δyが薄切りたくあんの体積で、そいつをインテグラルしてやればいい。
∫g(y)dy
たくあんの面積の式はどうなっているのか!ってことでしょう。

んじゃぁ、この、どこからできないのか、ということです。
できないところから勉強しないといけません。
    • good
    • 0

このQ&Aに関連する人気のQ&A

台形 体積」に関するQ&A: 台形の体積

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q台形の面積の求め方

AB=8cm、CA=6cm、△ABC=18cm^2の三角形ABCについて
辺AB、辺AC上にAD:DB=AE:EC=2:1となる点D、Eをとるとき、台形BCDEの面積を求める問題なのですが、わかりません。回答と求め方が知りたいです。宜しくお願いします。

Aベストアンサー

解答1
△ABC=(1/2)×8×6×sinA=24sinA
△ABC=18cm^2 だから
24sinA=18
sinA=3/4
AD:DB=AE:EC=2:1 より
AD=(2/3)AB=(2/3)×8=16/3 cm
AE=(2/3)AC=(2/3)×6=4 cm
よって、
△ADE=(1/2)×(16/3)×4×sinA=(1/2)×(16/3)×4×(3/4)=8
したがって、
台形BCDEの面積=△ABC-△ADE=18-8=10 (cm^2)

解答2
△ABCと△ADEで、
∠A=∠A
AD:DB=AE:EC=2:1 より
△ABC∽△ADE
したがって、
△ADE=(2/3)^2△ABC=(4/9)×18=8
したがって、
台形BCDEの面積=△ABC-△ADE=18-8=10 (cm^2)

です。

相似比が 2:1 であれば
面積比は 2^2:1^2
になります。

Q線形です (1)を x+3y-2z=0 x-2y+4z=0 x^2+y^2+z^2=1をもちいて 答

線形です
(1)を
x+3y-2z=0
x-2y+4z=0
x^2+y^2+z^2=1をもちいて
答えが+-の答えになりました
(2)では外せきが8,-6,-5となり
おおきさの5ルート5で割ると
+-の答えにはなりませんでした
どちらが正しいのでしょうか?

Aベストアンサー

外積からでてきた単位べクトルは、外積の定義から、ベクトルa、bに垂直ですよね。
だからそれと正反対のベクトルも、ベクトルa、bに垂直な単位ベクトルだから、これも答えに入れれば
よいのです。つまり外積から出した単位ベクトルの各成分に(-1)をかけた成分のベクトルも答えに
なります。そしてこうして出した2つのベクトルは、先に内積で出した2つのベクトルと一致します。

Q台形ABHGとか三角形AHGの面積の求め方を教えてください。

よろしくお願いいたします。

添付画像の台形ABHGとか三角形AHGの面積のオーソドックスな求め方を教えてください。

とりあえず、
台形ABCFが30で、ABの長さをaとしたとき、
CFは「たぶん」2aじゃないかなーと思いました
←AFの延長線とCBの延長線の交点とCFで三角形を作ると、BAが中線?になるのかなーと。

そうすると
台形ABCF=(a+2a)xhx1/2=30
ah=20で、

三角形AHG=1/2ax3/2h=3/4ah
になるのかなーと。


で、そう考える前に、
三角形AHGは台形ABHGの対角線を使ってできているから、
台形ABHGの面積がわかれば…とか思ったんですが、
わかっても、すぐには三角形AHGの面積は出ないんですね…

でも後学のために教えていただけないでしょうか?

【台形ABCFが30のとき、
台形ABHGは●●だな、三角形AHGは●●だなっ】

って、パッと分かると楽なんですが…

Aベストアンサー

とりあえず、2aの証明を二通り

1)
書かれているようにFAとCBの延長の交点をとります
交点をPとすると、△PABは正三角形
またAB//CFより△PFCも正三角形
AP = BP = AB = a
AF = AP + PF = a +a = 2a = FC

2)
正六角形は円に内接します
正六角形の外接円の中心をOとすると、FCの中点がOとなる
△ABOは正三角形となるため、円の半径 = a
CFは直径なので2a


面積は□ABHGから△AHGを求めるのは少し面倒な気はしますよ
△PAB : △PCF = 1:4
△PAB : □ABCF = 1 :3 = x : 30
△PAB = 10, △PCF = 40
△PHGも正三角形となるため
PA : PG = a: 1.5a = 1:1.5
△PAB : △PHG = 1: 2.25
△PHG = △PAB + □ABHG = 22.5
□ABHG = 12.5

もしくは、□ABCFの高さをhとすると、□ABHGの高さは1/2
GH = 1.5aなので □ABCF = (a + 1.5a)/2*1/2h = 2.5ah/4 = 12.5

△ABH : △AGH = a :1.5a (高さは共通のため)
□ABCF : △AGH = 2.5 : 1.5 = 12.5 : x
△AGH = 7.5


他のやり方としては
PFを底辺として図を書きなおして
△AGHは△PCFの底辺を1/4, 高さを3/4にしたものになるので
40 * 1/4 * 3/4 = 7.5

Pを取らないなら
△ACF = 1/2□ABCF = 15
AFを底辺として見たら、△AGHは底辺が1/2, 高さが3/4なので
15 * 1/2 * 3/4 = 7.5

とりあえず、2aの証明を二通り

1)
書かれているようにFAとCBの延長の交点をとります
交点をPとすると、△PABは正三角形
またAB//CFより△PFCも正三角形
AP = BP = AB = a
AF = AP + PF = a +a = 2a = FC

2)
正六角形は円に内接します
正六角形の外接円の中心をOとすると、FCの中点がOとなる
△ABOは正三角形となるため、円の半径 = a
CFは直径なので2a


面積は□ABHGから△AHGを求めるのは少し面倒な気はしますよ
△PAB : △PCF = 1:4
△PAB : □ABCF = 1 :3 = x : 30
△PAB = 10, △PCF = 40
△PHGも正三角形となるため
PA...続きを読む

Qx+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

クリックありがとうございます(∩´∀`)∩

 ★x+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

この問題について説明をお願いします。

Aベストアンサー

おおざっぱな説明になりますが、左の式を
z=-x-y
として、それを右の式のzに代入します。
それを展開してまとめると
x^2-2xy+y^2=0
という式になります。
あとはこれを因数分解すれば
(x-y)^2=0
となるので、x=yという答えがでます。
与えられた条件がほかになければこれでいいはずです。

Q台形の「面積・底辺・角度」から『上辺と高さ』の求め方

台形の
面積、底辺、角度が解っている場合に
その『高さと上辺』の求める方法を教えて頂きたいのですが。

よろしくお願いします。

Aベストアンサー

下底が20mで面積が100m^2なら、
 X^2-40X+200=0 を解いて、X=20±10√(2)を得ます。

ここで、上底の長さは20-Xですから、X=20+10√(2)を代入すると、マイナスになってしまいます。
従って、X=20+10√(2)はあり得ず、残ったX=20-10√(2)が正解となります。

すなわち、
 台形の上底=20-X=20-20+10√(2)=10√(2)
 台形の高さ=20-10√(2)
となります。

Q3x^2+7xy+2y^2-5x-5y+2=(x+2y-1)(3x+y-2)について

3x^2+7xy+2y^2-5x-5y+2を因数分解せよという問題で、xについて整理し、3x^2+(7y-5)x+(y-2)(2y-1)という方針で解いていくやり方と、
yについて整理し、2y^2+(7x-5)y+(x-1)(3x-2)という方針で解いていくとき方の2通りありますが、どちらで解く習慣を身につけておいた方がよろしいでしょうか?

Aベストアンサー

xやyのどちらの文字で整理するかで決めるのでなく、
次数の低い方、
その文字の現れる項数が少ない方
両方とも同じなら最高次の係数が小さい方
の文字に着目して整理して解くのが基本かと思います。

例題の場合はx,yについて共に2次、項数も共に3項で同じ、最高次の係数も3と2で素数の小さな数ですから、あまり差はありません。後は好みだけの問題でしょう。同じならxと決めて置いても

他の方法としてxとyの両方に着目し2次の項の因数分解
3x^2+7xy+2y^2=(x+2y)(3x+y)
をしてから、一時項を含めた因数分解に進めます。
左辺=(x+2y+a)(3x+y+b)
定数項ab=2に着目してa,bの候補を絞れば良いですね。

Q面積の求め方

ど忘れしちゃいました。

画像の面積の求め方と、実際の面積がいくつかなるか計算出来ますか?

答えはm2でお願いします。

台形は(上+下)×高さ÷2なのですが、四辺が違う場合は?

Aベストアンサー

 平行な辺が上底と下底になるから、図を右に90度回転させて、

(390+437)*258÷2=106683m2ニャ。

Q(1)半径rの円x^2+y^2=r^2と直線3x+y+10=0が共有点

(1)半径rの円x^2+y^2=r^2と直線3x+y+10=0が共有点をもつとき、rの値の範囲を求めなさい。
(2)円x^2+y^2=18と直線y=x+mが共有点をもつとき、定数mの値の範囲を求めなさい。
(3)半径rの円x^2+y^2=r^2と直線4x-y+17=0が異なる2点で交わるとき、rの値の範囲を求めなさい。
(4)円x^2+y^2=5と直線y=3x+mが接するとき、定数mの値の範囲を求めなさい。
(5)半径rの円x^2+y^2=r^2と直線x-3y-10=0が共有点を持たないとき、rの値の範囲を求めなさい。

解き方含め教えてください!!
お願いします。

Aベストアンサー

(1)
共有点を持つ、つまり実数解をもつということです。
実数解をもつということは、判別式DがD≧0となればよいのは分かりますね?
さて、何と何が実数解をもつかというと、x^2+y^2=r^2と3x+y+10=0ですね。
3x+y+10=0をy=-3x-10と変形して、これをx^2+y^2=r^2に代入して、xの2次方程式にしてD≧0を計算すればいいわけです。

(2)
同様に考えましょう。
y=x+mをx^2+y^2=18に代入してxの2次方程式にして、D≧0を計算すればmの値の範囲が分かるはずです。

(3)
異なる2点で交わる。つまり重解を持たずに実数解をもつ場合です。このとき判別式DはD>0となります。
他の考え方は一緒です。
4x-y+17=0を変形してx^2+y^2=r^2に代入し、その2次方程式の判別式DをD>0として計算するだけです。

(4)
接するとき、つまり重解をもつ時です。この時判別式DはD=0となります。

(5)
共有点を持たないときは、実数解をもたないときになります。
D<0ということです。


長くなりましたが、判別式の使い方さえ把握していれば全部同じ考え方で解ける基本問題ですね。

(1)
共有点を持つ、つまり実数解をもつということです。
実数解をもつということは、判別式DがD≧0となればよいのは分かりますね?
さて、何と何が実数解をもつかというと、x^2+y^2=r^2と3x+y+10=0ですね。
3x+y+10=0をy=-3x-10と変形して、これをx^2+y^2=r^2に代入して、xの2次方程式にしてD≧0を計算すればいいわけです。

(2)
同様に考えましょう。
y=x+mをx^2+y^2=18に代入してxの2次方程式にして、D≧0を計算すればmの値の範囲が分かるはずです。

(3)
異なる2点で交わる。つまり重解を持たずに実数解をもつ...続きを読む

Q面積の求め方に関して

面積の求め方に関して質問です。


正方形の面積の求め方は底辺×高さで求めます。

底辺=25、高さが25の場合は

25×25=625になります。



円周の長さから面積を求める場合は

長さ÷3.14÷2=答え÷2の答え×答え×3.14

長さ100とした場合

100÷3.14÷2=15.9235・・・・

四捨五入して15.92として

15.92×15.92×3.14=795.82

四角形も直線にした場合は長さが100となりますよね?

なぜ面積の答えが違うんでしょうか?

小学生にもわかる回答で教えていただければ幸いです。

※そもそも円周の長さから面積の求め方が間違っているんでしょうか??

Aベストアンサー

円周--周囲の長さと面積は、図形の形が異なれば無関係です。

たとえば、周囲の長さが同じでも、正方形よりは長方形のほうが面積が小さいですね。

円を20等分して並べ替えてみると図のようになります。

 このように、同じ周長なら円がもっとも面積が大きい。言い換えれば同じ面積なら丸が一番周長は短い。だから、バーゲンで袋にいっぱいつめれば丸くなっちゃう。水に浮かんだ油の粒が丸くなる。水と油の境界線をもっとも短くしようとするから円になるのです。

 体積も同じで、宙に浮かぶ水滴が球になるのは、表面張力で表面を小さくしようとすると、球になってしまう。同じ体積なら球がもっとも表面積が小さい。

Q「(5x+3)^10でx^pとx^(p+1)の係数比が21:20になる時のpの値」と「x+y=1を満たす全x,yに対してax^2+2bxy+by^2

こんにちは。識者の皆様、宜しくお願い致します。

[問1] (5x+3)^10の展開式でx^pとx^(p+1)の係数比が21:20になる時のpの値を求めよ。
[問2]x+y=1を満たす全てのx,yに対して
ax^2+2bxy+by^2+cx+y+2=0が成立するように定数a,b,cの値を定めよ。

[1の解]
(5x+3)^10=10Σk=0[(10-k)Ck 5x^(10-k)3^k]なので
p=10-kの時(k=10-pの時)
p+1=10-kの時(k=9-pの時)より
a:b=pC(10-p) 5^p 3^(10-p):(1+p)C(9-p) 5^(1+p) 3^(9-p)
で 1/(10-p):(1+p)/(2p-8)/(2p-9)=7:4 から
23p^3-199p+218=0
となったのですがこれを解いてもp=6(予想される解)が出ません。
やり方が違うのでしょうか?

[2の解]
与式をx+yという対称式で表せばならないと思います(多分)。
どうすれば対称式で表せるのでしょうか?

Aベストアンサー

 (1)Cをばらして比を簡略化するところで計算間違いがありそうな気がします。その経過をもう少し詳しく書いてもらえませんか?
 (2)a,b,cを求めるにはまず、x+y=1 を満たすすべての(x,y)で成り立つのですから、x+y=1を満たす(x,y)をまず代入してみてはどうでしょうか。候補としては、(1,0)(0,1)(2,-1)など。
 それから計算されたa,b,c でx+y=1を満たすすべてのx,yで成り立つかどうかを確認するという手順でどうでしょうか?


人気Q&Aランキング