ネットが遅くてイライラしてない!?

分散、標準偏差の単位


数Iのデータの分析についての質問です。
標準偏差や分散にも、〔kg〕や〔個〕のような単位は付けるのでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (4件)

勿論。


分散の式はV=(1/N)Σ(X-平均)² だからkg² や 個²が単位
標準偏差σ=√V だから kg や 個が単位

卵1個と100gを足して101、これは意味が無い。
意味のある議論をするためには常に単位に配慮しなければならない。
ということで、バラツキ(分散)言う尺度を平均との関連で議論する場合には√操作をして次元(単位)を同じに揃えてやる必要が出てくるわけです。

なので分散と平均の比較と言った議論にはならず、標準偏差σを√Vとやって単位を揃え、σと平均の比較・・・とするわけです。
    • good
    • 1
この回答へのお礼

とても分かりやすい説明をしていただきありがとうございました!

お礼日時:2016/12/18 13:56

NO.2 さ〜ん! 間違ってまっせ!



バラツキ(分散)Vと標準偏差σには、
V=σ^2
の関係があり、標準偏差と偏差値は別物です。

偏差値というのは、平均値を50として自己の成績が全体のどの辺りの順位に位置するのかを客観的に判断するための指標であり、単位のない値(無名数)です。

一方、標準偏差は正規分布で近似される標本において、df の裾野がどの程度広がっているのかを表した数値です。よって標本と同じ単位をもちます。
分散は、標本の2乗の平均値から標本の平均値の2乗を引いて求めます。従って単位は標本値の2乗となります。この値の正の平方根が標準偏差となります。
    • good
    • 0

コレとか読んでみて



https://ja.m.wikipedia.org/wiki/標準偏差
    • good
    • 0

標準偏差ってデータのバラツキ具合を示すものですよね。

だから偏差値には単位がありません。
但し、バラツキ1σは〇〇kgとかで表現するでしょう。
ココで説明するにはむずかしいなぁ。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aと関連する良く見られている質問

Q標準偏差と分散の単位についての質問です.

標準偏差と分散の単位についての質問です.

データのばらつきを評価する1つの手段として,分散が使われます.この時,分散の計算式から,「分散の単位は,標本のデータの2乗である.そこで標本のデータと単位をそろえるために,平方根を取り,標準偏差とする」と,しばしば説明されます.この説明の,特に前半部分がピンときません.

例えば標本の単位がメートルであった時,分散の単位は平方メートルになります.「そりゃ,機械的にそうなるよな」と,私はまず思います.次に「単位が平方メートルということは,じゃあ,分散というものは面積か?」と考えてしまいます.そして「長さのばらつきを評価したいだけなのに,なぜ面積なんかが登場するのだ」,と混乱します.標本の単位がグラムであれば,「グラムの2乗ってなんなんだ?」とますます混乱します.

混乱しないためにはどのように考えれば良いのか,アドバイスをいだたければ幸いです.

メートルの2乗だから面積,などと具体的に踏み込んでしまうのがいけないのでしょうか?メートルの2乗はメートルの2乗以上のものではなく(つまり面積を意味しているわけではなく),機械的にメートルの2乗になっているだけなのでしょうか?グラムの2乗についてもそうで,その具体的な意味を考えることが無意味なのでしょうか?

それとも,グラムの2乗にもちゃんと意味があって,混乱するのは,私が単位というものの本質を理解していないからでしょうか?

標準偏差と分散の単位についての質問です.

データのばらつきを評価する1つの手段として,分散が使われます.この時,分散の計算式から,「分散の単位は,標本のデータの2乗である.そこで標本のデータと単位をそろえるために,平方根を取り,標準偏差とする」と,しばしば説明されます.この説明の,特に前半部分がピンときません.

例えば標本の単位がメートルであった時,分散の単位は平方メートルになります.「そりゃ,機械的にそうなるよな」と,私はまず思います.次に「単位が平方メートルということは...続きを読む

Aベストアンサー

あるるデータが平均値からどれくらい偏っているかを表す為に、
単純に平均値との差を取り全データの和を取るとプラスマイナスが
相殺して違いが消えてしまうことが有ります。
これを避けるために、差の絶対値を取ると相殺という欠点は無くなりますが、
絶対値記号は不連続関数で数学的に取り扱い難いという問題点が有ります。
それでは4乗でも6乗でも良いのかと言うと、やはり2乗は取り扱い易く
応用も広いと言う利点が有ります。
これらの点に付いては「分散と標準偏差」に付いての他のQ&Aを
参考にしてください。


さて、単位ですが興味有る問題です。
数学では A + B = C と書いてしまえばそれまでです。
この式が何らかの意味、例えば社会的や物理的な意味、を持つためには
単位や次元が必要となります。
A=キャベツ5(個)、 D=人間2(人)の場合、
A+B=5+2=7(は何でしょう?) つまり、意味の無い足し算です。

自然科学では、計算の場合に常に左右の単位は合っていなければなりません。
単位は系として時間T、長さL、質量Mの組合せで順次構成されています。
単位の掛け算とわり算も行います。例えば、長さから
長さ1m は [L]、 面積 1mx1m はm2 [L^2]、 体積1mx1mx1m は
m3 [L^3]と表されます(L^2はLの2乗)。
速度vは有る距離Lを行くのに掛かる時間tですから、
v = L/t [L/T]=[L*T^(-1)]
加速度αは有る時間間隔Δtでの速度の増加Δv
α = Δv/Δt [(L/T)/T] = [L/T^2] = [L*T^(-2)]
力Fの場合、質量mに掛かる加速度
F = mα = [M*(L*T^(-2))] = [M*L*T^(-2)]

物理や化学で、有るモノAがある量にBに比例すると言い(A=kB)、
AとBの次元(単位)が違う場合には、その比例係数kが次元(単位)を
調整する次元を持ちます。
変な例ですが、ある人の所有する土地は3m幅の細長い矩形で端からの
面積Sm2は端からの長さLmに比例する場合
S=kL k=3 で Sの次元[M^2] =定数kの次元 [M]x長さの次元[M]です。
A=キャベツ5(個)、 D=人間2(人)の場合、
A/B=5/2=2.5 は(個/人) つまり、一人当たりのキャベツの
個数で意味の有る結果と単位です。


つまり、意味のある議論をするためには常に単位に配慮しなければならない
ということで、分散(バラツキ)と言う尺度を平均との関連で議論する場合には
√操作をして次元(単位)を揃えてやる必要が出てくるわけです。

単位や次元を掛けたり割ったりすれば無限の単位や次元の組合せが
出てきます。その中で「意味の有る」ものだけが議論に使われます。
重さの2乗とは?と聞かれ「親亀の背中に子亀が乗った状態では」一般性も
汎用性もでてきません。

単位は物理屋にも難敵ですから、考え出したら混乱するのも
無理は無いと思います。

あるるデータが平均値からどれくらい偏っているかを表す為に、
単純に平均値との差を取り全データの和を取るとプラスマイナスが
相殺して違いが消えてしまうことが有ります。
これを避けるために、差の絶対値を取ると相殺という欠点は無くなりますが、
絶対値記号は不連続関数で数学的に取り扱い難いという問題点が有ります。
それでは4乗でも6乗でも良いのかと言うと、やはり2乗は取り扱い易く
応用も広いと言う利点が有ります。
これらの点に付いては「分散と標準偏差」に付いての他のQ&Aを
参考にしてく...続きを読む

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Qデータの分析~単位について~(超初歩…><)

問題集を解いていると、同じ問題集でも偏差や標準偏差に単位がついている解答とついていない解答があります。
(問題文には単位有)

小中学校では、単位を付けて解答することは当たり前のことととらえていましたが、単位をつけるつけないという細かいことは○×には関係ないのでしょうか…。

教えてください。よろしくお願いします。

Aベストアンサー

質問の趣旨がよく分からないのですが、それは、
身長 160cm の人と 170cm の人がいる場合、
二人の身長の標準偏差は 5 なのか 5cm なのか
5m なのか…というようなことを
尋ねておられるのでしょうか?

Q吸光度の単位

吸光度の単位は何でしょうか!?
一般的には単位はつけていないように思われるのですが。。
宜しくお願いします。

Aベストアンサー

物理的には、No.1さんも書かれているように吸光度も透過度も基本的に同じ単位系の物理量どうしの「比」なので「無単位」です。しかし、無名数では他の物理量、特に透過度と区別が付かないので、透過度は"透過率"として「%」を付けて表し、"吸光度"は「Abs(アブス)」を付けて呼ぶのが業界(分析機器工業会?)のならわしです。

Q3σについて教えてください(基本的なこと)

文系出身なので、基本的なことが分かっていませんが、仕事の資料で出てきたので教えてください。
3σとは標準偏差で、規格を外れる確率が99.7%? など、少し調べたのですが、まだまだ分かりません。

例)
取引先の製品の、あるパラメータ(寸法)のロット内ばらつきを示す資料に、N=20個 規格6.0mm±0.3mm AVE.5.983で、3σ0.021というものありました。
※数値はうろ覚えです・・・
質問)
AVE.は20個測定した平均が、5.983mmだったということはもちろん分かるのですが、3σの0.021とはどう理解すればよいのでしょうか。
6.00mmに対して、0.021mm以上ずれる確率が0.03%と思えばよいのでしょうか?それともAVE.に対して0.021mmずれる確率???
そもそも0.021の単位は?(mm?)
はてなばかりですみません。初歩的な質問ですみませんが、例を挙げて分かりやすく教えていただけたら幸いです。

Aベストアンサー

> N=20個 規格6.0mm±0.3mm AVE.5.983で、3σ0.021

を普通に読むと、規格6.0mm(±0.3mm) で 20 個製造して検査したところ、平均値は 5.983 で標準偏差は 0.007mm (=0.021÷3) であった、という意味になります。標準偏差の単位は、標準偏差は「平均からのずれ」の平均ですから、平均値と同じになります。

この工程での真の平均値をμとしますと、今回の 20 個製造して得られた平均値 X=5.983 の標準偏差は 0.00157 (=0.007/√20) 程になります。これは、μは 99.7 %の確率で 5.983±(3×0.00157) にあることを示しています。
ここから、真の平均μが 6mm であったならば 0.3% 以下しか起こらないような珍しいことが起こっているという意味で「統計的に有意な差がある」といい、真の平均は6mmではない、と結論づけることが出来ます。

それから、製品一つ一つについては、平均 5.983±0.021 に入らない確率は 0.03 %になります。
何れにせよ、99.7%は規格の範囲内に入っていることになりますね。

> N=20個 規格6.0mm±0.3mm AVE.5.983で、3σ0.021

を普通に読むと、規格6.0mm(±0.3mm) で 20 個製造して検査したところ、平均値は 5.983 で標準偏差は 0.007mm (=0.021÷3) であった、という意味になります。標準偏差の単位は、標準偏差は「平均からのずれ」の平均ですから、平均値と同じになります。

この工程での真の平均値をμとしますと、今回の 20 個製造して得られた平均値 X=5.983 の標準偏差は 0.00157 (=0.007/√20) 程になります。これは、μは 99.7 %の確率で 5.983±(3×0.00157) にあることを示...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q標準偏差に「通常の範囲」はありますか?(初心者の質問です)

現在、仕事で必要のため大変困っています。

大量のデータ(物件の見積金額)のばらつきを出すために「STDEVP」関数を用いて「標準偏差」を出しました。
この標準偏差というのは、よくある「山のようなグラフ」(すみません、名前がわかりません)の平均からどれだけ離れているか・・・ということをみるものでよかったでしょうか?

また、この標準偏差に「通常の範囲」というのはありますか?たとえば「マイナス」にはならないとか100以上の数値はない・・・など

そしてこのデータを「山のようなグラフ」にして見た目にすぐにわかるようにしたいのですが、どのようにしたら良いですか?

くだらないご質問だとはお思いでしょうが、なんとかお力を貸してください。

Aベストアンサー

>よくある「山のようなグラフ」
●正規分布グラフのことでしょう。
●標準偏差は、1峰の山型分布に限らず、平均を出せるデータがあれば(また平均はどんな場合でも出せますから)
(データ-平均)の2乗を全てのデータに亘って加えた
(Σ)もの(分散)から計算するからです。その平方根(+の方を採る約束)です。(不偏分散に付いては略)
●正規分布かそれに近い分布でないと、「もの」(推論)が言えないだけです。(例えば「平均値 ± 1 標準偏差の範囲内には全データの 68.27% が含まれる」など)
誤差に関係するようなものは使えます。正規分布以外の分布は沢山あります。むしろ正規分布が特殊でしょう。
>この標準偏差に「通常の範囲」というのはありますか
プラス値であることだけです。値について、1より小とかの原理的範囲はありません。公式から判ります。データが2個しかないと仮定して、仮定で平均を決め、平均+α、平均-αのαの値を大きくすればいくらでも「分散」値は大きくなることで判ります。
>そしてこのデータを「山のようなグラフ」にして
現実データの現実分布の形によるのです。無理に山のような形に出来るものでもなく、して良いものでもありません。
現実の分布の形が「まずありき」であって、現実をモデル
分布に強引に当てはめては、本末顛倒です。
経験的に理論的に正規分布をするはずのものが、そうなっていない時には、QC活動でおなじみの、何か外因的作用(機械の故障)や何かの要因が加わっていると、疑うわけです。試験成績であれば、あるクラスではその出題関連単元を教え、他のクラスでは教えなかったとか、カンニングが行われたのではないか、問題があまりにも易しすぎたのではないかなど。
パチンコの例の解説がありました。
http://www.yi-web.com/~ps/java/kakuritu_syoho11.htm
http://www.yi-web.com/~ps/
小生はダメですが、この方面に興味があれば理解のキッカケが掴めるかも。

>よくある「山のようなグラフ」
●正規分布グラフのことでしょう。
●標準偏差は、1峰の山型分布に限らず、平均を出せるデータがあれば(また平均はどんな場合でも出せますから)
(データ-平均)の2乗を全てのデータに亘って加えた
(Σ)もの(分散)から計算するからです。その平方根(+の方を採る約束)です。(不偏分散に付いては略)
●正規分布かそれに近い分布でないと、「もの」(推論)が言えないだけです。(例えば「平均値 ± 1 標準偏差の範囲内には全データの 68.27% が含まれる」など)
誤差...続きを読む

Q相関係数についてくるP値とは何ですか?

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

Aベストアンサー

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場...続きを読む

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

Q統計学でいうRSD%とは何ですか。

統計学でいうRSD%の平易な説明と計算方法を知りたいのですが。標準偏差はわかります。

Aベストアンサー

RSD%とは、相対標準偏差をパーセントで表示したものと思われます。

相対標準偏差(%)=(標準偏差/平均値)×100

次のページは、「相対標準偏差 RSD 平均値」で検索して出たものの一つです。
http://www.technosaurus.co.jp/product/mlh_faq_sd1.htm

参考URL:http://www.technosaurus.co.jp/product/mlh_faq_sd1.htm


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング