No.9ベストアンサー
- 回答日時:
No.8です。
少し補足します。No.8では「座標系が変わる」という説明をしましたが、、これは言い方を変えると、
(1)では「台車」「おもり」各々の運動方程式を立てる。
(2)では「台車上の振り子」の運動方程式を立てる。
ということです。
(1)では、「台車」「おもり」各々について
MA = mg*sinθ ①
ma = -mg*sinθ ②
の運動方程式を立て、これから
MA + ma = 0 ⑤
の関係を求めるということです。
そして、これを使って、(2)の「台車上の振り子」の運動方程式を立てたものが
ma = -mg*sinθ + mA ④
です。
④は、実は座標系を変換したことにより、②の a を「a - A」に置き換えているのです。つまり新しい座標系での振り子の運動方程式は
m(a - A) = -mg*sinθ ⑥
ということです。これが②と等価になります。ここで⑤の関係から
A = -(m/M)a
なので⑥に適用して
m[ a + (m/M)a ] = -mg*sinθ
つまり
m[(M + m)/M]a = -mg*sinθ
より
ma = -mg*sinθ*M/(M + m) ⑦
となり、これが「台車上の振り子」の運動方程式です。
(この式からすると、No.8で「振り子の周期は、糸の長さが L*M/(M + m) の振り子の周期」といったのは間違いで、「糸の長さが L*(M + m)/M の振り子の周期」というのが正しそうです)
あとは、a=dv/dt=L*d^2θ/dt^2、θ<<1 のとき sinθ≒θ より、θ についての微分方程式を解いて「周期」を求めてください。
T = 2パイ * [ L*(M + m)/Mg ]^(1/2)
となるかな?
度々詳しい回答本当にありがとうございます!とても助かりました。
しかも、よく理解出来ましまた!
まだまだ、自分が勉強不足だということが再認識出来ました。
もう一度自分で整理して解いてみます!
No.8
- 回答日時:
No.7です。
「お礼」に書かれたことについて。>問題がaとAの関係式をきいているので、
>ma=-mgsinθ+mA
>を答えとしても問題ないのでしょうか?
いいえ。問題文にあるように「床上に原点にOをとり水平方向右向きにx軸をとる」なので、静止している床から見た運動方程式を立てないといけません。
お示しの「ma=-mgsinθ+mA」は「台車の上に座標の基準点(原点)を取ったもの」ですから、そもそも「x」が違うものを表します。ということは、速度も加速度「a」「A」も、同じ記号で書いても「違うもの」を指しています。
「ma=-mgsinθ+mA」の「a、A」と、「MA + ma = 0」の「a、A」とは違うものです。ここでは「床上に原点にOをとり水平方向右向きにx軸をとる」座標での「a、A」の関係を答えなければいけません。
従って、(1)の答は
MA + ma = 0
ということです。
この問題では、「台車上の座標系」で解くと、かなり厄介になりそうですよ。
これを(2)に展開するには、No.6に書いたように
>「地上」から見れば
>・おもりが左に行けば、台車は右に
>・おもりが右に行けば、台車は左に
>という風に動く
ということになるので、振り子は、O1を中心に振れるのではなく、「O1とおもりの間」を中心として振れることになります。振れる中心は「O1とおもりの間を m:M に分割する点」になります。
つまり、振り子の周期は、糸の長さが
L*M/(M + m)
の振り子の周期ということになると思います。
その辺は、問題の解説に書かれているのではありませんか?
No.7
- 回答日時:
No.5です。
「お礼」に書かれたことについて。>上式から、解答にある、
>ma+MA=0
>は、どのように導くのでしょうか?
「上式」とは
ma = -mg*sinθ + mA ④
のことですか? ④は「台車上の座標系」の運動方程式なので、これから「静止した地上の座標系」の運動方程式
MA + ma = 0 ⑤
は導けません。別な座標系の記述ですから。
⑤式は、単純に
MA = mg*sinθ ①
ma = -mg*sinθ ②
の「右辺」が等しい(符号は逆ですが)ことから求まります。
これが、No.6に書いた
>「地上」から見れば
>・おもりが左に行けば、台車は右に
>・おもりが右に行けば、台車は左に
>という風に動くということです。
度々ありがとうございます。
とても物理学に詳しいようで心強いです。
この問題の(1)の答えが、
ma+MA=0
自分が解いた時に立てた式が、
ma=-mgsinθ+mA
でした。
問題がaとAの関係式をきいているので、
ma=-mgsinθ+mA
を答えとしても問題ないのでしょうか?
てっきり、
ma=-mgsinθ+mA
から、
ma+MA=0
が、導けるものと思っていました。
No.6
- 回答日時:
No.5です。
すみません、回答No.がごちゃごちゃして、文章を間違えました。最後のところは、下記に訂正します。
この運動方程式④は、#4 さんへの「お礼」に書かれた ←#3 ではなく #4 が正しいです。
>箱に観測者をおくと、小球についての運動方程式が、
>ma=-mgsinθ+mA
>とはならないのでしょうか?
と同じ内容です。質問者さんの考え方は正しいと思いますよ。
ちなみに、No.5で「運動量保存」と書いたのは、
・おもりの単振動は「台車 + おもり」の系の中の「内力」なので
・「台車」と「おもり」の重心は動かない
従って、「地上」から見れば
・おもりが左に行けば、台車は右に
・おもりが右に行けば、台車は左に
という風に動くということです。
これを「台車」の上の座標系から見ると、「台車は止まっている」ということなので、その分「右に左に」と振られている状態、つまり「加速したり減速したりする電車の中で振り子を振らせている(加速・減速の周期は、振り子の周期と同じで逆位相)」という感じです。
No.5
- 回答日時:
No.2&3です。
補足でようやく全体が分かりました。No.3に書いたように、「台車」がなくて「固定した天井」からつるされていれば、「糸の張力」は何もしません。天井が踏ん張って反力に耐えるからです。
これが、問題のように「天井は台車」であれば、台車はこの「張力」に対する反力によって運動します。
張力の「水平方向の成分」は
Fx = -mg*sinθ
ですから、台車に働く力はその反力「mg*sinθ」であり、台車の運動方程式は、台車の質量(おもりの質量は除く)を M として
MA = mg*sinθ ①
となります。
一方、振り子のおもりの運動方程式は、No.2のとおり
ma = -mg*sinθ ②
です。
①②より
MA = -ma
MA + ma = 0
これは
MV + mv = const
ということで「運動量保存」ということです。
これを「台車の上の座標系」で見ると、台車が「加速度 A で動く」ので、振り子の運動方程式は②から
m(a - A) = -mg*sinθ
に変わります。
左辺は「運動を表すもの」で、「台車の加速度」分だけ加速度が変わります。
右辺の「おもりに働く力」は変わりません。
ただし、これを
ma = -mg*sinθ + mA ④
と書くと、右辺の「mA」が「おもりに働く見かけ上の力」(慣性力)ということになります。
この運動方程式④は、#3 さんへの「お礼」に書かれた
>箱に観測者をおくと、小球についての運動方程式が、
>ma=-mgsinθ+mA
>とはならないのでしょうか?
と同じ内容です。質問者さんの考え方は正しいと思いますよ。
詳しい回答ありがとうございます。
また、説明不足で申し訳ありませんでした。
台車上に観測者をおき、慣性力を考慮した運動方程式、
ma=-mgsinθ+mA
は、間違っていないということがわかりました。
上式から、解答にある、
ma+MA=0
は、どのように導くのでしょうか?
お手数をおかけして、申し訳ないですが、教えてください。
No.4
- 回答日時:
なるほど!
箱型の台車とは考えませんでした。やっぱり図は大事ですね。
この解説の観測点は箱の外側であり、その時の関係式であることはわかっているんですね。
箱に観測点を固定した場合に、「つるされた小球に見かけ上かかる力の式を求めたい」ということでしょうか?
直観的には
「箱が外部から単振動の周期で揺らされる外力がかかている」ように感じる。
と、思いますが。まさにこれが箱の慣性力ですね。
その見かけ上の外力Fは
F=MA
です。
そして、その見かけ上の外力の源は、「Θだけ振れた小球がもとに戻ろうとする力」ですから
F=-ma
=mgsinΘ
になりそうです。
あれっ!
やっぱり同じ結論になりそうですね。
なんか間違っている気がしてきたので、ほかの回答者の検証を待ちましょう。
ご回答ありがとうございます。
ご指摘の通り、箱の中に観測者を置いたときのみかけの力についての詳細が知りたいです。
箱に観測者をおくと、小球についての運動方程式が、
ma=-mgsinθ+mA
とはならないのでしょうか?
こうなると、解説とは違う結果になってしまうと思われます。
解説に書いてあることは理解できるのですが…。
No.3
- 回答日時:
No.2です。
ちょっと書き忘れ。No.2に書いた
**************
>求めるために小球の運動方程式を立てているのですが、
「ma=-mgsinΘ」となっています。
は、「天井から長さLの糸でつるしたおもり」の単振動の運動方程式です。
「重力の糸と直角方向成分」が「F=-mg*sinθ」ですから、これを単純に運動方程式
F=ma
に入力しただけの話です。
***************
において、「重力の糸の長さ方向成分」は「糸が伸び縮み」しない限り何の運動もしないので、運動方程式を立てる必要はありません。単に「糸の張力と釣り合っている」というだけです。
強いて運動方程式を書けば、糸の張力を T として
Fs = T - mg*cosθ = 0
で、Fs = ma より a=0 、つまり「加速度ゼロ」なので、「円周一定」ということになります。
ご解答ありがとうございます。
問題が不明瞭で申しわけありませんでした。
問題を正確に記載いたしました。
お手間であるとは思いますが、ご教授ください。
No.2
- 回答日時:
#1さんと同じで、問題文の「台車」と「おもり」と「小球」の関係と、その位置関係、初期状態、運動の状態などがすべて不明です。
このような質問では、オリジナル通りの問題を書くのが常識です(必要なら図も)。「解き方・答が分からない」あなたは、実は「問題を正確に把握できていない」場合が多いからです。
おそらく
>求めるために小球の運動方程式を立てているのですが、
「ma=-mgsinΘ」となっています。
は、「天井から長さLの糸でつるしたおもり」の単振動の運動方程式です。
「重力の糸と直角方向成分」が「F=-mg*sinθ」ですから、これを単純に運動方程式
F=ma
に入力しただけの話です。
ここには「台車」は一切登場しません。
台車と「天井から長さLの糸でつるしたおもり」との関係が質問文に書かれていない限り、
>台車も加速度を持つと思ううのですが、慣性力は考慮しなくて良いのでしょうか??
には答えようがありません。
No.1
- 回答日時:
私の理解力の欠如のせいなのか、
「台車」と「小球」の関係性が全く掴めません。
本題
質量のある物体に慣性力が働かないはずは無いのですが?
加速度を考える場合は加速度方向に働く力を考えた方が、わかりやすいと思いますが?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 物理の単振動の問題で分からない所を教えてください 1 2023/05/10 20:59
- 物理学 力学の問題です。水平なレールの上の台車に立てられ枠に質量mのおもりを長さLの糸で吊り下げた単振り子が 1 2022/12/23 20:15
- 物理学 物理の問題 3 2022/11/12 17:22
- 物理学 台と小物体合わせた全体の水平方向の運動方程式 とは? 8 2022/09/02 06:33
- 物理学 高校物理 水平な床面上の点Aから、水平と角θをなす向きに速さv0、質量mの小球aを高さhの点Bで静止 1 2022/06/06 17:53
- 物理学 ここで回答している相対論信者って全員、相対性理論を理解できてないですよね? 4 2023/03/08 12:40
- 物理学 力学の問題です。質量m1、速度v1の物体Aと質量m2、速度v2の物体Bがx軸上を等速直線運動していて 2 2022/12/24 13:26
- 物理学 水平な床に敷いたじゅうたんの上に質量M, 半径aの球をおく。 ある瞬間から 一定の加速度αでじゅうた 5 2022/10/24 20:23
- 物理学 写真の図では、円運動が起きていますが、質問が3つあります ①例えば、鉛直面での円運動なら、垂直抗力が 6 2022/12/19 18:20
- 物理学 振り子運動について 2 2023/01/08 16:34
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
スマホに会話を聞かれているな!?と思ったことありますか?
スマートフォンで検索はしてないのに、友達と話していた製品の広告が直後に出てきたりすることってありませんか? こんな感じでスマホに会話を聞かれているかも!?と思ったエピソードってありますか?
-
治せない「クセ」を教えてください
なくて七癖という言葉どおり、人によっていろいろなクセがありますよね。 あなたには治せないクセがありますか?
-
【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
「出身中学と出身高校が混ざったような校舎にいる夢を見る」「まぶたがピクピクしてるので鏡で確認しようとしたらピクピクが止まってしまう」など、 これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
-
【穴埋めお題】恐竜の新説
【大喜利】 考古学者が発表した衝撃の新説「恐竜は、意外にもそのほとんどが〇〇〇」 (〇〇〇に入る部分だけを回答して下さい)
-
力学の問題です。水平なレールの上の台車に立てられ枠に質量mのおもりを長さLの糸で吊り下げた単振り子が
物理学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】看板の文字を埋めてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・【穴埋めお題】恐竜の新説
- ・我がまちの「給食」自慢を聞かせてっ!
- ・冬の健康法を教えて!
- ・一番好きな「クリスマスソング」は?
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
ボルダの振り子に対する単振り...
-
剛体振り子の周期
-
振り子時計の振り子はなぜ止ま...
-
ブランコについての質問です。
-
単振り子が切れないように…
-
単振り子の振動を止める
-
高校物理問題教えてください1
-
物理振り子の周期について 画像...
-
振り子の長さをy かかる時間を...
-
ガリレオの振り子が止まる理由
-
ボルダの振り子を用いた重力加...
-
実体振り子、単振り子の違い
-
単振り子の線形近似と離散化
-
粘性抵抗中の単振り子の運動
-
物理の単振動のx=A sinωt とか...
-
ふりこ 糸の長さ 一往復の時間
-
振り子の長さと周期の関係のグ...
-
円錐振り子に働く力について
-
メトロノームは「てこの原理」?
-
PDF-XChange Viewerで、回転し...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
振り子時計の振り子はなぜ止ま...
-
ガリレオの振り子が止まる理由
-
電池式振り子時計について
-
振り子の長さをy かかる時間を...
-
振り子の長さと周期の関係のグ...
-
高校物理の振り子でおもりを離...
-
振り子
-
力学的エネルギーの保存・弾性...
-
メトロノームは「てこの原理」?
-
ラグランジュの運動方程式の問...
-
単振り子、ばね振り子のそれぞ...
-
物理のエッセンスの発展問題で...
-
力学です。大学のテストなんですが
-
剛体振り子の周期
-
アルプスの少女ハイジ
-
スマホ振り子ってdヘルスケア、...
-
スパイダーマンの動きの件
-
単振り子の振動を止める
-
mathematicaを用いて振り子の支...
-
円錐振り子について
おすすめ情報
この質問では問題の意味がわかりませんよね。
反省します。問題を正確に書き、解説をアップします。
問題
なめらかで水平な床の上に質量Mの台車があり、天井に長さlの軽くて伸び縮みしない糸の一端が固定。他端に質量mの小球がつるされて静止している。床上に原点にOをとり水平方向右向きにx軸をとる。台車はx軸方向のみに動くものとする。小球の大きさ、空気抵抗は無視。重力加速度はgとする。小球を鉛直線から微小な角θoの状態から静かに小球を離すと、小球はx軸方向に単振動を始めた。台車が傾くことは無い。
(1)x軸方向の小球の加速度と台車の加速度をそれぞれa,AとしてaとAの関係式を導け。
(2)小球の単振動の周期を求めよ。
(1)の問題で解説のように運動方程式を立てていますが、台車の中に観測者をおいて慣性力を考慮した場合どのように解答すればいいのでしょうか?解説と同じ結果になりますでしょうか?