sin(1[rad.]を求めてください。

質問者からの補足コメント

  • 解析的に求めてください。

      補足日時:2017/03/18 00:57
  • sin(1)は未知数とします。

      補足日時:2017/03/18 21:08

このQ&Aに関連する最新のQ&A

解析 意味」に関するQ&A: 解析的の意味?

A 回答 (7件)

非正則でもよければ


https://math.stackexchange.com/questions/298029/ …
の(4)

以下は、tan(1)の連分数展開ですが、割ときれい
https://math.stackexchange.com/questions/8610/co …
    • good
    • 0

>数値のみで表してください。


それは、#2の方がすでに書いてくださっています。

あるいは、#4で書いた、無限級数による表示も数値のみですけど。。
    • good
    • 0
この回答へのお礼

では連分数でお答えください。

お礼日時:2017/03/18 22:19

解析的ではない(閉じた式でないので)ですけど、


sin(1) = 1 - 1/(3!) + 1/(5!) - 1/(7!) + …
とかなら納得ですか?
あるいは、#1の方の回答(sinじゃなくて、expを使う)なら納得?

もし期待しているものが、πとかeとかのよく知られている定数の加減乗除の組み合わせで表示できないか、ということであればそれは不可能です。
(とはいっても、私の感覚では、sin(1) は、それ自身「よく知られている定数」ではないのか、と思ったりもしますが。。)
    • good
    • 0
この回答へのお礼

数値のみで表してください。

既知の超越数を使わずに。

お礼日時:2017/03/18 22:06

> 解析的に求めてください。



sin(1)は、(一般的な意味では)すでに解析的に書かれていますけど。。

「解析的」という言葉は、
「既知の関数や定数などを用いて閉じた形の式に表せること」という意味ですが、
じゃあ、何が「既知」なのかは、人によって異なることはありえるでしょうが、
それにしても、sin(x)が既知の関数であることに異論を持つ人はあまりいないでしょうし、「1」という定数が既知の数であることに異論を持つ人はいないでしょう。
    • good
    • 1

π=3とされた世代であれば


2π=6
1rad=60°
sin1=sin60°=√3/2
となるんでしょうかね?

実際の値を求めるなら関数電卓とかエクセルで計算するのが速いかと。
    • good
    • 0

sin(1[rad])≒0.841470984808…

    • good
    • 0

(I/2)/E^I - (I/2) E^I

    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aと関連する良く見られている質問

Q何故,[g]=[Ψ]1[f][Φ]^-1ではなく[g]=[Ψ]^-1[f][Φ]なの?

[v_1,v_2,…,v_n],[v'_1,v'_2,…,v'_n]を線形空間Vの基底とする。
[w_1,w_2,…,w_m],[w'_1,w'_2,…,w'_m]を線形空間Wの基底とする。

それで図のように

fを基底[v_1,v_2,…,v_n]から基底[w_1,w_2,…,w_m]での線形写像。
gを基底[v'_1,v'_2,…,v'_n]から基底[w'_1,w'_2,…,w'_m]での線形写像。
そしてΦを[v_1,v_2,…,v_n]から[v'_1,v'_2,…,v'_n]への基底変換の写像。
Ψを[w_1,w_2,…,w_m]から[w'_1,w'_2,…,w'_m]への基底変換の写像とすると
gの表現行列を[g]と表す事にすれば
[v'_1,v'_2,…,v'_n]→[v_1,v_2,…,v_n]→[w_1,w_2,…,w_m]→[w'_1,w'_2,…,w'_m]と写されるので
[v'_1,v'_2,…,v'_n]→[v_1,v_2,…,v_n]はΦ^-1,
[v_1,v_2,…,v_n]→[w_1,w_2,…,w_m]はf,
[w_1,w_2,…,w_m]→[w'_1,w'_2,…,w'_m]はΨで
結局[g]=[Ψ][f][Φ]^-1となると思ったのですがなぜか本には
[g]=[Ψ]^-1[f][Φ]となっています。何処を勘違いしたのでしょうか?

[v_1,v_2,…,v_n],[v'_1,v'_2,…,v'_n]を線形空間Vの基底とする。
[w_1,w_2,…,w_m],[w'_1,w'_2,…,w'_m]を線形空間Wの基底とする。

それで図のように

fを基底[v_1,v_2,…,v_n]から基底[w_1,w_2,…,w_m]での線形写像。
gを基底[v'_1,v'_2,…,v'_n]から基底[w'_1,w'_2,…,w'_m]での線形写像。
そしてΦを[v_1,v_2,…,v_n]から[v'_1,v'_2,…,v'_n]への基底変換の写像。
Ψを[w_1,w_2,…,w_m]から[w'_1,w'_2,…,w'_m]への基底変換の写像とすると
gの表現行列を[g]と表す事にすれば
[v'_1,v'_2,…,v'_n]→[v_1,v_2,…,v_n]→...続きを読む

Aベストアンサー

記号を整理しておく。

線形写像T: V→Wを、Vの基底[v1,...,vn]とWの基底[w1,...,wn]で表現した行列を[f]、
同じ線形写像Tを、Vの基底[v'1,...,v'n]とWの基底[w'1,...,w'n]で表現した行列を[g]で表す。
[v1,...,vn]から[v'1,...,v'n]への基底変換の行列を[Φ]とする。
(v'1,...,v'n)=(v1,...,vn)[Φ]

[w1,...,wn]から[w'1,...,w'n]への基底変換の行列を[Ψ]とする。
(w'1,...,w'n)=(w1,...,wn)[Ψ]

Vの元を基底[v1,...,vn]で表現したものを[x]、
同じ元を基底[v1,...,vn]で表現したものを[x']で表すと、(回答#2より)
[x]=[Φ][x']

同様に、Wの元を基底[w1,...,wn]で表現したものを[y]、
同じ元を基底[w1,...,wn]で表現したものを[y']で表すと、
[y]=[Ψ][y']

線形写像Tを基底[v1,...,vn]と基底[w1,...,wn]で表すと、
[y]=[f][x]
同じ線形写像Tを基底[v'1,...,v'n]と基底[w'1,...,w'n]で表すと、
[y']=[g][x']

これらの関係から、
[y']=[Ψ^-1]*[y]=[Ψ^-1]*[f][x]=[Ψ^-1][f][Φ][x']
となり、これを[y']=[g][x']と見比べると、
[g]=[Ψ^-1][f][Φ]
となっていることがわかる。

最初の質問にあった、
>[v'_1,v'_2,…,v'_n]→[v_1,v_2,…,v_n]→[w_1,w_2,…,w_m]→[w'_1,w'_2,…,w'_m]と写されるので
の対応はベクトル間の対応であって、だからこそ、その係数(=成分)の対応はこれとちょうど逆の変換を受けるのである。このことは、
[v][x]=[v'][Φ^-1]*[Φ][x']
[w][y]=[w'][Ψ^-1]*[Ψ][y']
と表してみてもわかる。ベクトルの成分[x']は行列[Φ]によって[x]にうつり、同じく成分[y']は行列[Ψ]によって[y]にうつっている。だから、同一の線形写像が
f:[x]→[y]
g:[x']→[y']
と表現されているなら、[Ψ][g][x']=[f][Φ][x']となっていて、いいかえると、
[x']→[y']の対応は、[x']→[x]→[y]→[y']という対応をたどったときも、一致していなくてはならない。だから、成分で考えたとき、[g]は、[Φ]→[f]→[Ψ^-1]と同一になるのである。つまり[g]=[Ψ^-1][f][Φ]。

あなたのいう[Φ^-1]→[f]→[Ψ]は、基底ベクトルの対応関係であって、成分表示と混同してはいけない。

記号を整理しておく。

線形写像T: V→Wを、Vの基底[v1,...,vn]とWの基底[w1,...,wn]で表現した行列を[f]、
同じ線形写像Tを、Vの基底[v'1,...,v'n]とWの基底[w'1,...,w'n]で表現した行列を[g]で表す。
[v1,...,vn]から[v'1,...,v'n]への基底変換の行列を[Φ]とする。
(v'1,...,v'n)=(v1,...,vn)[Φ]

[w1,...,wn]から[w'1,...,w'n]への基底変換の行列を[Ψ]とする。
(w'1,...,w'n)=(w1,...,wn)[Ψ]

Vの元を基底[v1,...,vn]で表現したものを[x]、
同じ元を基底[v1,...,vn]で表現したものを[x']で表すと、(...続きを読む

Aベストアンサー

(*)式が間違っているように見えますが・・・。これではn=3のときにしか成立しません。
n=4のとき
P(C(1)∪C(2)∪C(3)∪C(4))
= P(C(1))+P(C(2))+P(C(3))+P(C(4))
-P(C(1)∩C(2))-P(C(1)∩C(3))-P(C(1)∩C(4))-P(C(2)∩C(3))-P(C(2)∩C(4))-P(C(3)∩C(4))
+P(C(1)∩C(2)∩C(3))+P(C(1)∩C(2)∩C(4))+P(C(1)∩C(3)∩C(4))+P(C(2)∩C(3)∩C(4))
-P(C(1)∩C(2)∩C(3)∩C(4))
というのは理解されていますか?

正しくは、
P(∪[i=1..n]C(i))
= Σ[i=1..n]P(C(i))-Σ[i1,i2=1..n, i1<i2]P(C(i1)∩C(i2))+Σ[i1,i2,i3=1..n, i1<i2<i3]P(C(i1)∩C(i2)∩C(i3))
-Σ[i1,i2,i3,i4=1..n, i1<i2<i3<i4]P(C(i1)∩C(i2)∩C(i3)∩C(i4))+…+(-1)^(n-1)P(∩[i=1..n]C(i))
となり、交互に符号が代わり共通部分を取る集合の数も1つずつ増えます。

証明の方針はあっていますよ。

(*)式が間違っているように見えますが・・・。これではn=3のときにしか成立しません。
n=4のとき
P(C(1)∪C(2)∪C(3)∪C(4))
= P(C(1))+P(C(2))+P(C(3))+P(C(4))
-P(C(1)∩C(2))-P(C(1)∩C(3))-P(C(1)∩C(4))-P(C(2)∩C(3))-P(C(2)∩C(4))-P(C(3)∩C(4))
+P(C(1)∩C(2)∩C(3))+P(C(1)∩C(2)∩C(4))+P(C(1)∩C(3)∩C(4))+P(C(2)∩C(3)∩C(4))
-P(C(1)∩C(2)∩C(3)∩C(4))
というのは理解されていますか?

正しくは、
P(∪[i=1..n]C(i))
= Σ[i=1..n]P(C(i))-Σ[i1,i2=1..n, i1<i2]P(C(i1)∩C(i2))+Σ[i1,i2,i3=1..n, i1<i2<i3]P...続きを読む

Q(再投稿)R^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義されないという状況に陥ってしまいます(∵必ずしもSはn次元区間塊とは限らない)。
するとλ(S)≧λ(S∩E)+λ(S∩E^c)という不等式は意味を成さなくなります。
従って,AがLebesgue可測集合である事が示せなくなってしまいます。
Lebesgue可測集合の定義を勘違いしてますでしょうか?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義され...続きを読む

Aベストアンサー

とりあえず教科書を読む.
定義が分かってなければ何もできない.

>Lebesgue可測集合とはλをLebesgue外測度とする時,
>{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。

こんなこと本当に書いてある?なんか読み落としているとか
説明の途中の何かだとか,勝手に創作してるとか?

>Lebesgue可測集合の定義を勘違いしてますでしょうか?
してる.
だって,それだったら「円」ですらルベーク可測じゃなくなる.

QR^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
から先に進めません。
λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=Σ[n=1..∞]λ(∪[k=n..∞]A_k)なんて変形もできませんよね。
どのすれば=0にたどり着けますでしょうか?

(イ)について
答えは多分Yesだと思います。
Lebesgue可測集合はL:={E∈R^n;E⊂Uでinf{λ^*(U\E);Uは開集合}=0}の元の事ですよね。
なのでLebesgue測度は制限写像λ^*|L:=μと書けますよね。
それで∩[n=1..∞]∪[k=n..∞]A_k∈Lを示せば(ア)からLebesgue測度0が言えると思います。
今,(ア)より
inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}=0
と分かったので
0=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
=inf{Σ[i=1..∞]|I_i\Bd(I_i)∪Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(但しBd(I_i)は境界点)
=inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(∵||の定義)
からinf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となればI_i\Bd(I_i)は開集合になので
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}=0が言え,
∩[n=1..∞]∪[k=n..∞]A_k∈Lも言え,
μ(∩[n=1..∞]∪[k=n..∞]A_k)=λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=0(∵(ア))
となりおしまいなのですが

inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
から
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となる事がどうしても言えません。どうすれば言えますでしょうか?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=...続きを読む

Aベストアンサー

数列の部分和の定義と∩∪の定義からすぐだと思いますよ。
面倒なので外測度を単にλで表します。
仮定はΣλ(A_k)<∞です。これは級数の収束の定義から部分和
S_N=Σ[k=1,..,N] λ(A_k)
がコーシー列、よって
任意のε>0に対してNが存在し、n≧Nならば
Σ[k=n,...,∞] λ(A_k)<ε
ということを言っているわけです。
問題は、∩[n=1,..,∞]∪[k=n,..∞] A_kの外測度を求めることですが上の事実を利用できることが分かると思います。上で示したNをとってきます。このとき
λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)≦Σ[k=N,..,∞] λ(A_k)<ε
となるのはほとんど明らかですね。任意のεに対してもっと大きい番号N'をとっても問題の集合はN'から先の和集合に含まれるわけですからこれは結局λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)=0でなければならないことを示しています。

QParsevalの等式と指示された関数を使ってΣ[k=1..∞]1/(2k-1)^2とΣ[k=1..∞]1/k^2の和を求めよ

[問] (1) 直交系{sin(nx)}は[0,π]で完全とする。Parsevalの不等式は
Σ[n=1..∞](b_n)^2=2/π∫[0..π](f(x))^2dxとなる。但し
,b_n=2/π∫[0..π]f(x)sin(nx)dx
(2) Parsevalの等式と指示された関数を使って次の級数の和を求めよ。
(i) Σ[k=1..∞]1/(2k-1)^2,f(x)=1
(ii) Σ[k=1..∞]1/k^2,f(x)=x


で(2)の求め方が分かりません。
b_n=2/π∫[0..π]1・sin(nx)dx=2/π∫[0..π]sin(nx)dx=2/π[-1/ncos(nx)]^π_0=4/(nπ)
Σ[n=1..∞](b_n)^2=2/π∫[0..π]f(x)^2dx=2/π∫[0..π]1dx=2/π[x]^π_0=2/π・π=2

となったのですがこれからどうすればいいのでしょうか?

Aベストアンサー

偶関数だからというより、nが偶数のとき
 b_n = 2/π∫[0..π] sin(nx)dx
は n/2周期にわたる積分になるので0です。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報