
A 回答 (5件)
- 最新から表示
- 回答順に表示
No.5
- 回答日時:
No.4です。
念のために、「誤差伝搬」の考え方や、四則演算でどう伝搬するかを解説したサイトを紹介しておきます。「観測データは、真値の周囲に正規分布する」というのが考え方のベースです。http://www.tagen.tohoku.ac.jp/labo/ishijima/gosa …
http://www.tagen.tohoku.ac.jp/labo/ishijima/gosa …
No.4
- 回答日時:
No.1&2 です。
#3さんのように、「有効数字」という考え方を嫌う方もいます(データを厳密に取り扱う科学者・専門家に多いようです)。確かに、「有効数字」という考え方には、数学的・統計学的な厳密さからするとあいまいさがあります。
そうはいっても、現実にはいろいろなデータを「実用的に」扱うときには、「有効数字」という考え方は簡易的で便利です。
この問題の場合、「誤差」という考え方をすると、各データは
0.5046 ± 0.00005
0.5089 ± 0.00005
0.5015 ± 0.00005
0.5365 ± 0.00005
0.5681 ± 0.00005
という誤差を持つと考えられます。
「誤差伝搬」の考え方から、「平均値」の誤差は、平均値の計算が「5つ加算して、データ個数の5で割る」なので
[ √(0.00005² + 0.00005² + 0.00005² + 0.00005² + 0.00005² ) ] /5
≒ 0.0000224
です。
正確には、求めた「平均値」の数値に対して、
0.52392 ± 0.0000224
という評価をします。「0.5238976~0.5239424あたりにある確率が高い」ということです。
これを、まあ、ざっくりと「最初の誤差 ± 0.00005とオーダー的に同程度」 とみなして、「平均値も、各データと同じ程度の誤差を持つ」「小数点以下5桁目を四捨五入すればだいたい妥当な数値になる」という処置をして、「0.52392 の5桁目を四捨五入して 0.5239 とする」というのが「有効数字」という取り扱いです。
厳密には正確ではありませんが、実用的には「おおむね合っている」という数値になります。
「有効数字は、数学的には厳密とは言えないが、おおむね妥当な数値になるので、実用上は便利に使える」という事情を知った上で、状況に応じた使い方をすればよいと思います。
No.3
- 回答日時:
「有効数字」というのは、測定値と、そこに含まれる誤差、という質的に全く異なる2つの数値を無理やりまとめてひとつの数字にしてしまうというおかしな表記法でして、
科学的なレポートの中では、よほどの理由がない限り使わないほうがよい(というか、むしろ使ってはいけない)です。
基本的には、誤差を含む測定結果は
測定値±誤差の大きさ
と、きちんと測定値と誤差を分けて書くようにしてください。
大学生でしょうか。学校で有効数字を使えと指示されたのでしょうか?
とりあえず、学校のレポートぐらいであれば、なんの指摘もうけないで通ってしまうかもしれませんが、
これが、もしちゃんとした論文なんかであれば、有効数字なんていう変な表記を使って書くと、レビュワーに「ちゃんと、測定値と誤差を分けて明示するように」と指摘されることになると思います。
それでも、あえて有効数字を使って表記したい、ということだとしても、
機械的に何桁まで、と決めるのではなくて、ちゃんと誤差の伝播を考えて桁数を決めてください。
たとえば、質問文にある実験値が同一の測定を繰り返したもの(真の値は同一と考えられる)、とするなら、
平均を取れば、誤差は、実験回数の平方根に反比例して減少します。
もとの実験データが4桁目まで正しい(誤差は、±0.00005)とするなら、
5つの平均値の誤差は、0.00005/√5 ≒ 0.00002 ですね。平均値の有功桁として4桁あるいは5桁になります(どちらにするかは微妙なところです)
No.2
- 回答日時:
No.1です。
計算手順として、まず「有効数字4桁」で「平均値」を求め、次にこの「有効数字4桁の平均値」を使って「標準偏差」を計算してください。不必要な桁を持った「平均値」で計算した「標準偏差」は、評価不能な「不正確さ」を持つことになってしまいますので。
No.1
- 回答日時:
もとのデータが「4桁」なら、計算値は5桁目を四捨五入して「4桁」にするのが普通の考え方です。
「5桁目には信頼性がない」ということです。
平均値0.52392 → 0.5239
標準偏差0.0253442222 → 0.02534
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
平均値をとると有効数字が増える?
数学
-
統計学における有効数字について質問です。
統計学
-
推定(統計)です。有効数字の扱いがよくわからないのですが、この場合標準偏差が2桁なので2桁に合わして
統計学
-
-
4
相対誤差が小さいと判断する基準がわからないのでどのような値になったら小さいと判断してよいのか教えてほ
大学・短大
-
5
標準偏差
数学
-
6
平均値の桁数に関して
数学
-
7
最小二乗法における有効数字について
その他(自然科学)
-
8
実験における誤差範囲の許容範囲の決め方ってどうやればいいんですか? また、一般的には具体的にどこ程度
大学・短大
-
9
中央値・四分位の有効数字はどこまでですか?
統計学
-
10
エクセルの散布図のX軸に文字を表示したいのですが、どうしたらよいのでしょうか?
Excel(エクセル)
-
11
誤差について
物理学
-
12
ガラス器具の許容範囲誤差と有効数字
化学
-
13
誤差について教えてください、、 誤差率は、 (測定値ー真値)/真値 だと思っていますが。 ある先輩か
その他(教育・科学・学問)
-
14
滴定の実験で、結果をExcelで一次微分曲線にまとめなければいけないのですが正しいグラフになりません
Excel(エクセル)
-
15
有効数字
化学
-
16
統計学でいうRSD%とは何ですか。
数学
-
17
検量線について
農学
-
18
サンプル数の異なる2群間におけるT検定について
その他(自然科学)
-
19
パーセントの計算での有効数字について
数学
-
20
有効数字について
化学
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
平均値、標準偏差の有効数字に...
-
実験における誤差範囲の許容範...
-
数値積分の累積誤差
-
相対誤差が小さいと判断する基...
-
高校化学、気体、温度の有効数字
-
繰り返しを何回やればいいのか...
-
150 25 0、20の有効桁数を教え...
-
照明器具の水銀
-
電波干渉について
-
電波はどういう仕組み出るので...
-
太平洋戦争中の外国や戦地との...
-
光変調型フォトIC S6809 感度が...
-
電波についての質問です。 電波...
-
スマホ同士の電波が干渉して聞...
-
なぜ 13のセグメントに分けら...
-
紙はなぜ電波を透過するか?
-
周波数と帯域幅について。
-
熱探知機が欲しいのですが
-
大理石って電波を通しますか?
-
TVなどのリモコンの先端に着...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
実験における誤差範囲の許容範...
-
平均値、標準偏差の有効数字に...
-
相対誤差が小さいと判断する基...
-
計算値と理論値の誤差について
-
石油(軽油)のタンクより 出し入...
-
【電気・蛍光灯の安定器はどこ...
-
エチルアルコールの体膨張係数...
-
150 25 0、20の有効桁数を教え...
-
3重解?
-
中学数学の誤差の絶対値を答え...
-
繰り返しを何回やればいいのか...
-
許容誤差とは
-
球体の誤差
-
需要予測の誤差及び精度の計算...
-
ドリフト係数(ブラウン運動・ブ...
-
高一物理 なぜルート√を近似値...
-
拡散定数から拡散速度を求める...
-
高校化学、気体、温度の有効数字
-
拡散変態、無拡散変態、サブゼ...
-
機器分析の問題(吸光度)(再)
おすすめ情報