
数学 2次曲線(楕円)の傾きの計算方法
楕円・双曲線・放物線を合わせた2次曲線の標準形は、ABCDEを定数として
A*x^2 + B*x*y + C*y^2 + D*x + E*y = 1
で表されます。特に、原点中心のものはDとEがゼロになり、
A*x^2 + B*x*y + C*y^2 = 1 ・・・・・①
となります。
この標準形が与えられ、
判別式 B^2 - 4*A*C < 0 を満たす場合、楕円になります。
いま、この判別式を満たしていて原点中心の楕円を表す式であるとわかっているとき、
ここから楕円の傾き(回転角度)θを導出するにはどのように計算すれば良いのでしょうか。
---- 以下、私の考え方を示します。
2次元の回転行列G(θ)は、
G(θ) = { { cosθ, -sinθ }, { sinθ, cosθ } }
の2x2の行列で表されます。
角度θの回転を戻すと、傾きの無い通常の楕円の方程式になるはずです。
回転前の通常の楕円の方程式を、座標X,Yとして
A*X^2 + B*X*Y + C*Y^2 = 1 ・・・・・②
とすると、B*X*Yの項は無いはずです。
つまり、回転前の式を調べて、X*Yの項の係数がゼロになるようなθを調べれば良いことになります。
角度θ回転する前の座標をX,Yとすれば、回転前の方程式は
回転後(与えられた式)の座標x,yに回転行列G(-θ)をかけて、
[X,Y]^T = G(-θ)・[x,y]^T (※^Tは転置)
と表されるので、逆に[x,y]^Tについて解けば、回転行列の逆行列をかけて、
[x,y]^T = G(-θ)^-1 ・[X,Y]^T
より、
x = X*cosθ + Y*sinθ
y = -X*sinθ + Y*cosθ
となります。このxとyを式①のx,yに代入すると、次式が得られます。
A*(X*cosθ + Y*sinθ)^2 +
B*(X*cosθ + Y*sinθ)*(-X*sinθ + Y*cosθ) +
C*(-X*sinθ + Y*cosθ)^2 = 1 ・・・・・・・・・・②
これが、回転前の楕円の方程式のはずです。
この式②を整理して、X*Yについての係数がゼロになるようなθを求めれば良いと考えているのですが、その計算がうまくいきません。
式②を展開してみると、
A*(X*X*cosθ*cosθ + 2*X*Y*sinθ*cosθ + Y*Y*sinθ*sinθ) +
B*(-X*X*sinθ*cosθ + X*Y*cosθ*cosθ - X*Y*sinθ*sinθ + Y*Y*sinθ*cosθ) +
C*(X*X*sinθ*sinθ - 2*X*Y*sinθ*cosθ + Y*Y*cosθ*cosθ) = 1
この中でX*Yの項だけ取り出すと、
A*(2*X*Y*sinθ*cosθ) +
B*(X*Y*cosθ*cosθ - X*Y*sinθ*sinθ) +
C*(-2*X*Y*sinθ*cosθ) = 0
(2*A*sinθ*cosθ + B*cosθ*cosθ - B*sinθ*sinθ - 2*C*sinθ*cosθ)*X*Y = 0
より、X*Yの係数についての恒等式、
2*A*sinθ*cosθ + B*cosθ*cosθ - B*sinθ*sinθ - 2*C*sinθ*cosθ = 0
B*(cosθ*cosθ - sinθ*sinθ) + 2*(A-C)*sinθ*cosθ = 0
cosθ*cosθ - sinθ*sinθ + (2*(A-C)/B)*sinθ*cosθ = 0
係数 (2*(A-C)/B) = Kと置きなおせば、
cosθ*cosθ - sinθ*sinθ + K*sinθ*cosθ = 0 ・・・・・③
となるようなθについて式③を解けば良いと思うのですが、この先に進めません。
この式は解けますか?それとも考え方が間違っているのでしょうか。

No.1ベストアンサー
- 回答日時:
そのURL先も読んではいたのですが、チェックが甘かったようです。
ちゃんと書いていますね。
と言いますか、倍角を使ってまだ式変形できましたね。
解決しましたありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
今、見られている記事はコレ!
-
弁護士が解説!あなたの声を行政に届ける「パブリックコメント」制度のすべて
社会に対する意見や不満、疑問。それを発信する場所は、SNSやブログ、そしてニュースサイトのコメント欄など多岐にわたる。教えて!gooでも「ヤフコメ民について」というタイトルのトピックがあり、この投稿の通り、...
-
弁護士が語る「合法と違法を分けるオンラインカジノのシンプルな線引き」
「お金を賭けたら違法です」ーーこう答えたのは富士見坂法律事務所の井上義之弁護士。オンラインカジノが違法となるかどうかの基準は、このように非常にシンプルである。しかし2025年にはいって、違法賭博事件が相次...
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
-
なぜ批判コメントをするの?その心理と向き合い方をカウンセラーにきいた!
今や生活に必要不可欠となったインターネット。手軽に情報を得られるだけでなく、ネットを介したコミュニケーションも一般的となった。それと同時に顕在化しているのが、他者に対する辛らつな意見だ。ネットニュース...
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
sin2xの微分について
-
アークサインの微分
-
θが鈍角のとき、sinθ=4分の3の...
-
教えてください!!
-
画像のように、マイナスをsinの...
-
高1 数学 sin cos tan の場所っ...
-
加法定理の応用問題でcosα=√1-s...
-
三角関数の周期 sin^n(x)、cos...
-
数学の問題で。。。0<θ<90 Sin...
-
単位円のパラメータ表示
-
数学 2次曲線(楕円)の傾きの計...
-
三角関数 マイナス3分のπのsinθ...
-
ln(-1) オイラー方程式
-
∫sin^2x/cos^3xdxの解き方が...
-
原点中心に図形を回転させる。(...
-
eのiθ乗のバーは?
-
三角関数の問題なのですが、e1=...
-
cos^2の2θ+sin^2の2θ=2
-
数学 常微分の問題が分かりません
-
力学・くさび
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
sin2xの微分について
-
教えてください!!
-
e^iθの大きさ
-
画像のように、マイナスをsinの...
-
tanθ=2分の1のときの sinθとcos...
-
アークサインの微分
-
θが鈍角のとき、sinθ=4分の3の...
-
数学の問題で。。。0<θ<90 Sin...
-
急いでます! θが鈍角で、sinθ...
-
3辺の比率が3:4:5である直...
-
高1 数学 sin cos tan の場所っ...
-
∫sin^2x/cos^3xdxの解き方が...
-
数学 2次曲線(楕円)の傾きの計...
-
式の導出過程を
-
sinθ+cosθ=1/3のとき、次の式の...
-
楕円の単位法線ベクトルがわか...
-
sin(ωt+θ) のラプラス変換
-
数学の微分です
-
次の関数を微分せよ y=sin^4 x ...
-
三角関数の合成
おすすめ情報
楕円のイメージを添付します。