No.2ベストアンサー
- 回答日時:
No.1 です。
>すみません判定値とは棄却域のことですか?
そうです。棄却域が、検定の基準とする分布の「両側」にあれば「両側検定」だし、「片側だけ」であれば「片側検定」です。
>そうしますと検定統計量を求めてから右側検定か左側検定か決まるのですか?
「検定統計量」を決めて、それが「従うべき分布」を明らかにし、その「従うべき分布」のどこが棄却域かを決めて検定します。
「検定統計量」が「マイナス」になる場合であっても、その「マイナス値」を含む範囲でどのように確率分布しているかを決めなければ、検定は始まりません。
何を検定するのか、そのための検定量をどう決めるか、その検定量の確率分布がどうなるか、その分布のどこが「棄却域」になるのか、といったことをきちんと定義して、「検定」を行うのです。
「何を検定するのか」によって、本来検定したい「対立仮説」や、そのための「当て馬」としての「帰無仮説」などを「立てる」ことになります。
>対立仮説はどのようにたてるのですか
それは検定をする人が、何をしたいかによって決めるものです。「検定のやり方」や「ツール」の側から形式的・自動的に決まるようなものではありません。
yhr2様
ご丁寧な説明ありがとうございました。
だいぶ理解できました。
根本的に大きな勘違いをしていました。
対立仮説がA<B(大きい)とすれば右側検定
A>B(小さい)ならば左側検定になると最初から思っていました。
その為A<B(大きい)のに検定統計量がマイナスになることが
理解できませんでした。
おっしゃるように形式的・自動的に当てはめていました。
どうもありがとうございました
心より感謝いたします。
No.1
- 回答日時:
>片側検定の場合はどう解釈すればいいのでしょうか?
話は簡単です。
統計量がマイナス~プラスの値をとり得る場合には、「統計量がプラスかマイナスか」ではなく、「判定値がどこにあるか」で決まります。
・判定値が「プラスとマイナスの両方」にあれば「両側検定」(例:製作誤差のような場合、大きすぎても小さすぎても有意と判定)
・判定値が「プラスだけ」にあれば「右側の片側検定」(例:大きすぎは有意と判定)
・判定値が「マイナスだけ」にあれば「左側の片側検定」(例:小さすぎは有意と判定)
何を検定したのか、ということが分かっていれば、そんな疑問は生じないと思いますが?
yhr2 様
早々のご回答ありがとうございました
すみません私にはいまひとつ理解できませんでした。
Aグループの平均よりBグループの平均の方が大きかったので
対立仮説をA<Bとしましたが
>話は簡単です。
統計量がマイナス~プラスの値をとり得る場合には、「統計量がプラスかマイナスか」ではなく、「判定値がどこにあるか」で決まります。
すみません判定値とは棄却域のことですか?
そうしますと検定統計量を求めてから右側検定か左側検定か決まるのですか?
対立仮説はどのようにたてるのですか
基礎的なことがわかってないようですみません
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 統計学 並べ替え検定について教えてください。 群Aか群Bの平均を検定統計量にすると思うのですがどのような場合 3 2023/05/13 17:23
- 統計学 統計学の問題です。よろしくお願いします。 ある部品の重量は正規分布に従うとされており,過去の経験から 1 2023/01/19 03:36
- 統計学 統計学が分かりません!詳しい解説と回答を教えてくださる方お願いいします! 5 2022/08/23 03:10
- 統計学 統計学の質問【帰無仮説】 W大学のP学部において、自宅通学者の比率にについて調べたい。 P学部から1 8 2023/05/25 23:28
- 大学・短大 大学 統計学 1 2022/09/14 11:27
- 統計学 統計学の問題です。よろしくお願いします。 あるサイコロを3回投げると,1の目が2回出た。 1の目が出 4 2023/01/19 15:21
- 統計学 統計学の問題です。よろしくお願いします。 あるサイコロを3回投げると,1の目が2回出た。 1の目が出 8 2023/01/19 03:37
- 統計学 統計学の問題です よろしくお願いします 区間推定 母集団は正規分布に従い,母分散は σ2 = 112 1 2023/01/31 18:57
- 統計学 理論値と実測値の検定方法 3 2022/04/19 09:32
- 統計学 t統計量とF統計量について 9 2023/01/05 14:23
このQ&Aを見た人はこんなQ&Aも見ています
-
あなたの「必」の書き順を教えてください
ふだん、どういう書き順で「必」を書いていますか? みなさんの色んな書き順を知りたいです。 画像のA~Eを使って教えてください。
-
スマホに会話を聞かれているな!?と思ったことありますか?
スマートフォンで検索はしてないのに、友達と話していた製品の広告が直後に出てきたりすることってありませんか? こんな感じでスマホに会話を聞かれているかも!?と思ったエピソードってありますか?
-
遅刻の「言い訳」選手権
よく遅刻してしまうんです…… 「電車が遅延してしまい遅れました」 「歯医者さんが長引いて、、、」 「病院が混んでいて」 などなどみなさんがこれまで使ってきた遅刻の言い訳がたくさんあるのではないでしょうか?
-
プリン+醤油=ウニみたいな組み合わせメニューを教えて!
プリンと醤油を一緒に食べると「ウニ」の味がする! というような意外な組み合わせから、新しい味になる食べ物って色々ありますよね。 あなたがこれまでに試した「組み合わせメニュー」を教えてください。
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
マイナスのt値
心理学
-
効果量のマイナス表示に関して
数学
-
検定の質問です。 有意水準5%、検定統計量t検定で棄却域を片側設定の際、t分布表は見方が違うのでしょ
統計学
-
-
4
サンプル数の異なる2群間におけるT検定について
その他(自然科学)
-
5
統計で、信頼区間のマイナス値に関して
統計学
-
6
t検定で自由度がn-1の場合と、n-2の場合の違いは??
数学
-
7
t検定のt値について
数学
-
8
統計学における有効数字について質問です。
統計学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~12/6】 西暦2100年、小学生のなりたい職業ランキング
- ・ちょっと先の未来クイズ第5問
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
サンプル数の異なる2群間にお...
-
検量線の決定係数について
-
心理学の統計について
-
統計学のサンプル数2000の根拠は?
-
変化率のみで、有意差の検定は...
-
【統計】有意に「高い」?「低...
-
下の対数表示のグラフから低域...
-
極値をもつ時と持たない時、単...
-
エクセルの統計でχ二乗検定の結...
-
統計について
-
対応のあるt検定の結果の書き方
-
データ点を線で結ぶ場合と結ば...
-
エクセルのグラフから半値幅を...
-
検定統計量の値がマイナス
-
一元配置分散分析のp値が0になる
-
卒論でアンケート結果を引用す...
-
卒業論文のアンケートの数について
-
EXCELにてローパスフィルタを作...
-
統計で、信頼区間のマイナス値...
-
アスピリンの加水分解のPHプロ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
サンプル数の異なる2群間にお...
-
検量線の決定係数について
-
下の対数表示のグラフから低域...
-
エクセルのグラフから半値幅を...
-
EXCELにてローパスフィルタを作...
-
心理学の統計について
-
統計について
-
極値をもつ時と持たない時、単...
-
エクセルの統計でχ二乗検定の結...
-
卒業論文のアンケートの数について
-
理科のグラフで、直線と曲線の...
-
【統計】有意に「高い」?「低...
-
一次関数 グラフや式それぞれ...
-
一元配置分散分析のp値が0になる
-
最小二乗法を反比例の式を元に...
-
検定統計量の値がマイナス
-
対応のあるt検定の結果の書き方
-
x=2分の3のグラフはどのように...
-
統計学の問題でわからないので...
-
片対数グラフで…
おすすめ情報