
文字係数の2次不等式についてです。画像の問題が解答を読んでも理解出来なかったので、質問させて頂きます。
与式2つの範囲を出すところまでは分かるのですが、その出した範囲が、なぜ右側の数直線のようになるのかが分かりません。
文字aが入っている方の範囲②は、具体的な値が分からないのに、
定数の範囲①と、比べて、共通範囲を出すことが出来るのでしょうか?
出来る場合は、やり方を教えてほしいです。
また、a<=3 かつ a+2>=-1 という範囲を答えとして導くとき、どのような考え方を用いていますか?
長くなりましたが、
①右側のグラフの意味
②文字を含む範囲と、定数を含む範囲の、共通範囲の求め方
③なぜ、答えがa<=3 かつ a+2>=-1となるのか。
以上の3点を教えて頂けると幸いです。
よろしくお願いします。

No.2ベストアンサー
- 回答日時:
aは文字ですが 1や2などの数値を表している定数です
したがって、基本的にはaは固定された数字だと思って扱います(これに対してxは自由に変わり得る変数で、定まった値を示してはいません)
ということは、aが表している数字が仮に0なら、a≦x≦a+2は0≦x≦2を表していることになりますから ②の範囲を示す小さな四角は画像の数直線の中央部分にあることになり-1≦x≦3を表す大きな四角の中に完全に包み込まれている状態です→従ってa=0では①②は共通範囲を持ちます
次に、仮にaが-2を表しているとすればa≦x≦a+2は-2≦x≦0を表していることになりますから、これは位置的には画像の左の小四角で一部分が①②の範囲となっています
しかしながら、a=-4であるとすると a≦x≦a+2は-4≦x≦-2を表していることになりますから、①②は共通範囲を持たないことになります
このように、aが表している具体的数字の想定をスライドさせて小さくしていくとき、どこまでなら小さくしても共通範囲を持たせることができるか?と考えるのです
すると、a=-3までなら(a≧-3⇔a+2≧-1なら) 共通範囲をもたせることが可能だとわかります(aが-3を表しているとき、②の範囲は-3≦x≦-1なので辛うじてx=-1が①との共通範囲となっています・・・これよりもaが小さくなると、辛うじて共通範囲であったx=1も共通範囲でなくなってしまいます)
同様に考えて aの想定数字をスライドさせて大きくしていくとき辛うじてx=3を共通範囲とできるのがaが表す数字=3のときです・・・a≦3
aが表す数字がこれ以上大きくなると 共通範囲がなくなってしまいます
このことから aの想定数字のスライド幅は -3~3だと言えるのです
このことが理解できたら時短のために機械的に考えます
aの黒丸を数直線上でスライドさせます、
すると常にaより+2だけ右側の位置に a+2の黒丸がある状態を保ちながら2つの黒丸はスライドすることになります
このa~a+2の黒丸を端点とする小四角が完全に①の大̻四角から外れない範囲でスライドさせるためのaやa+2の限界はいくらか?と考えるのです
すると小四角の左方向へのスライドでは、a+2の黒丸が大四角の端点x=-1と重なるところまでなら可能でそれ以上左へスライドすると小四角と大四角は完全に離れてしまうことが分かります
すなわち小四角の黒丸(右)がx=a+2の位置でx=-1と重なるか、またはそれより右にないと(大きくないと)いけないということですから
a+2は-1以上⇔a+2≧-1と分かります
同様に 小四角の右方向へのスライドでは、aの黒丸が大四角の端点x=3と重なるところまでなら可能 すなわちx=aの位置がx=3で重なるか、またはそれより左にならないと(小さくならないと)いけないということですから 3≧aが求められます
No.1
- 回答日時:
①の範囲は分かりますね?
a を含む不等式は
[x - (a + 1)]^2 - 1 ≦ 0
→ [x - (a + 1)]^2 ≦ 1
と変形できますから、これを満たす x の範囲は
-1 ≦ x - (a + 1) ≦ 1
であり、この不等式から2つの不等式
(a + 1) - 1 ≦ x つまり a ≦ x
と
x ≦ 1 + (a + 1) つまり x ≦ a + 2
ができますよね?
この2つを合わせて
a ≦ x ≦ a + 2
これが②です。
この②は a の値によって、数直線の「左の方」にあったり「真ん中」にあったり「右の方」にあったりしますね。
それに対して①の範囲は数直線上に固定です。
その関係を示しているのが「解答」の数直線の図です。
②の範囲が、a が小さくて①よりも左にあれば、共通範囲(つまり、2つの不等式の共通範囲)がありません。
②の範囲が、a が大きくて①よりも右にあれば、これまた共通範囲(つまり、2つの不等式の共通範囲)がありません。
つまり、a の値を動かしたときに、どこで①と②が共通範囲を持つか、ということを説明したのが数直線の図です。 ←これが質問①への回答
②の範囲の上限「a + 2」が、①の範囲の下限「-1」よりも大きい、そして
②の範囲の下限「a」が、①の範囲の上限「3」よりも小さい
というのがその条件だということが分かりますよね? ←これが質問②③への回答
つまり
-1 ≦ a + 2 すなわち -3 ≦ a
かつ
a ≦ 3
ということになります。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 数学の証明問題について質問です。 今日私大入試があったのですが、AとBの共通部分となるxの範囲を求め 1 2023/02/10 15:27
- Excel(エクセル) エクセルの数式について教えてください。 2 2023/03/04 09:54
- 数学 高一数学 二次関数画像あり 〔 チャート 94ページ 問題練習118番 〕 この問題の不等式はの答え 5 2023/08/19 15:59
- 数学 高校数学の質問です 文字を消去したり、置き換えたりしたら、残った文字に範囲がつくかどうか調べるという 4 2023/05/03 18:18
- 数学 2次不等式の問題で 2 2022/04/08 18:36
- 数学 基礎問題精講、演習問題47(2)(i)について (2)-8<x<-1の範囲で不等式x^2-ax-6a 3 2022/06/02 00:37
- 数学 高2 数2 3 2022/06/20 21:39
- 数学 この写真の問題の(2)について何ですが、(1)の「2解が共に1より大きい」という時は写真のように、 5 2022/07/22 11:46
- 数学 【 数I 二次方程式の実数解 】 問題 ※写真の(2) 解答 いずれか一方のみが実数解を持つため に 1 2022/06/25 17:36
- 数学 【 数I 】 問題 aを定数とする。1≦x≦3において,xの 不等式ax+2a-1≦0・・・・・・① 2 2022/07/15 17:40
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
絶対値のついた2つの不等式に...
-
三角関数 -3分のπって3分の5...
-
年代と年台・・・どちらが正し...
-
「余年」の意味について教えて...
-
三角関数の範囲について、 0≦x≦...
-
整式にはx^0、つまり整数のみは...
-
エクセルで(~以上,~以下)...
-
Q(p+q, pq)の動く範囲で,y≧0の...
-
存在条件 たぶん高校基礎内容です
-
領域の問題
-
18年度からのセンター数学1Aは?
-
数学についてです。 y=x^(1/3)...
-
不等式で辺々加えるときに不等...
-
離れた列での最大値の求め方
-
X4乗=64の解き方を教えてほし...
-
文字係数の2次不等式についてで...
-
最大公約数についてお聞きしま...
-
エクセルに入力されたリストか...
-
ラプラス変換が可能な範囲とは
-
整式の係数について xについて...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
「余年」の意味について教えて...
-
年代と年台・・・どちらが正し...
-
エクセルで(~以上,~以下)...
-
離れた列での最大値の求め方
-
COUNTIF関数 ある範囲の数値で...
-
三角関数の範囲について、 0≦x≦...
-
お教えで来る範囲内で 文言が変...
-
三角関数 -3分のπって3分の5...
-
EXCELで最大値と最小値を除いた...
-
文字係数の2次不等式についてで...
-
(x2乗+9)って因数分解出来ます...
-
シグマの範囲が2nまでの関数で...
-
エクセルでPrint Area と表示さ...
-
判別式の使う時とか使わない時...
-
高校数学、三角関数についてで...
-
指定範囲内のオートシェイプを...
-
基礎問題精講、演習問題47(2)(i...
-
X3乗―2=0
-
エクセルに入力されたリストか...
-
方程式 e^x=x+1 の解
おすすめ情報