No.4ベストアンサー
- 回答日時:
No.2では近似計算で円に近いものであることを示しましたが、今度はご質問の曲線が周期的に並ぶ閉曲線であることを証明しましょう。
f(x) = cos(cos(x))
これは、周期πの周期関数です。また、cos(1)≦f(x)≦1 であり、f(x)は常に正です。
nを整数として、x = nπ のときf(x)は最小値 cos(1) をとります。
g(y) = sin(sin(x))
これは、周期2πの周期関数です。-sin(1)≦g(y)≦sin(1) です。
mを整数として、y = (2m + 1/2)π のとき最大値 sin(1)をとります。
また、(2m-1)π<y<2mπ のとき、g(y)は負となります。
ここで、h(x, y) = f(x) - g(y) とおきます。ご質問の曲線は、h(x, y) = 0 と表わされます。
h(x, y)はx方向に周期π、y方向に周期πの周期関数です。そこで、-π/2≦x≦π/2, -π≦y≦π で表される、x方向に幅π、y方向に高さ2πの長方形Rの範囲を考えます。周期関数ですから、長方形の外は、周期的に長方形の内部と同じになります。
長方形Rの下半分、つまり-π≦y≦0 の範囲をR1とします。R1では、g(y)≦0です。また、f(x)は常に正ですから、h(x, y)>0 となります。したがって、R1の中に h(x, y) = 0 はありません。
長方形Rの上半分、つまり0≦y≦πの範囲をR2とします。R2は正方形です。R2の辺上では、h(x, y)>0 となっています。R2の内部でh(x, y)が最小となるのは、x = 0, y = π/2 のときで、h(x, y) = cos(1) - sin(1) となります。これは負の数です。
つまり、正方形R2の辺上ではh(x, y)>0 であるが、R2の内部には h(x, y)<0 となる点があるので、R2内でh(x, y) = 0 は閉曲線になります。
No.3
- 回答日時:
sin(siny)=cos(cosx)を変形すると、
y=arcsin(arcsin(cos(cosx)))となります。
arcsinは-1から1の間でのみ定義されています。
cos(cosx)の絶対値は1以下なので、arcsin(cos(cosx))までは関数値が必ず定義されますが、その値の絶対値が1を越えるとarcsin(arcsin(cos(cosx)))の値は定義されなくなります。
そのため、piを周期として周期的に定義されない部分が定期的に出てきます。
なお、「閉鎖した円状」とありますが、実際には「下側円弧状」です。
この回答へのお礼
お礼日時:2005/03/23 09:32
ご教示どうもありがとうございました。閉鎖した円状と書いたのはソフトが示してくれた形を述べたものですが、○がx軸に並行に周期的に並んでいます。
No.2
- 回答日時:
これは、どうやらTaylor展開と関係ありそうです。
sin B = cos A のとき、
A±B = (2n + 1/2)π; nは整数
B = sin y, A = cos x のときは、-2≦A±B≦2 なので n = 0 に限られます。
cos x を x = 0 のまわりでTaylor展開して2次の項までとると、
cos x ≒ 1 - (1/2)x^2
sin y を y = π/2, y = -π/2 のまわりでそれぞれTaylor展開して2次の項までとると、
sin y ≒ 1 - (1/2)(y - π/2)^2
sin y ≒ -1 + (1/2)(y + π/2)^2
すると、A + B = π/2, A - B = π/2 は、それぞれ
x^2 + (y - π/2)^2 ≒ 4 - π
x^2 + (y + π/2)^2 ≒ 4 - π
となるので、近似的に円の方程式となります。
この回答へのお礼
お礼日時:2005/03/23 09:28
私の想像の範囲を超えているところにある関係をご教示いただくのは大変ありがたいことです。円のような形になるのはソフトのせいではなくて、数学的根拠があるわけですね、ありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 複雑な三角関数の周期の求め方 2 2022/10/04 16:44
- 工学 制御工学の問題です。 3 2023/01/23 22:32
- Excel(エクセル) EXCELのグラフを画像(JPG形式)で保存、通常実行がうまく行かない。ステップインはうまく行く 3 2022/08/30 12:06
- 数学 分数方程式を解く際にグラフを描く必要はあるのですか? 2x-1/(x-1)=x+1 のような分数方程 2 2022/12/17 16:05
- 数学 三角関数の和 4 2023/06/17 18:33
- 数学 y=sinx+cos(2x)のグラフはsinxとcos(2x)のグラフを書いて重ねたらかけますか? 4 2023/05/27 09:37
- 物理学 下図のグラフについてですが、①グラフの面積がコイルのエネルギーを表すことからおそらく縦軸はコイルでの 2 2023/07/22 17:57
- 数学 グラフ理論の数学の問題です。このタイプの問題は初めて見たので、どうやって解けばいいかわからないです。 1 2023/05/27 19:09
- 数学 高校数学で質問があります。 2 2023/02/13 15:49
- 計算機科学 エクセルのデータの表すことについて 2 2023/03/05 20:49
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】看板の文字を埋めてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・【穴埋めお題】恐竜の新説
- ・我がまちの「給食」自慢を聞かせてっ!
- ・冬の健康法を教えて!
- ・一番好きな「クリスマスソング」は?
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
cosπ/2やcos0ってどのように求...
-
π/2<=x^2+y^2<=π,0<=x<=yのとき...
-
極座標θ r φの範囲
-
1 / (x^2+1)^(3/2)の積分について
-
∫[0→∞] 1/(x^3+1)dx
-
重積分の変数変換後の積分範囲...
-
sinθ・cosθの積分に付いて
-
cos π/8 の求め方
-
逆三角関数の方程式の問題です...
-
積分法(アステロイドの面積)...
-
レムニスケート
-
複素数平面上での平行移動
-
重積分について
-
複素数平面で、複素数を極形式...
-
重積分を使って曲面積を求める...
-
極座標A(2,π/6)となる点を通り...
-
1/(sinx+cosx)の積分
-
偏微分係数の問題
-
重積分 変数変換 絶対値
-
cos(π×i/4)の値を求めてくださ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1 / (x^2+1)^(3/2)の積分について
-
cosπ/2やcos0ってどのように求...
-
位相がよく分かりません。 cos(...
-
重積分について
-
絶対値付き三角関数の積分、ラ...
-
数3の極限について教えてくださ...
-
y=sin4θとy=cos4θのグラフの...
-
1/(sinx+cosx)の積分
-
五芒星の角(?)の座標
-
複素数のn乗根が解けません
-
この1/2はどこからでてきました...
-
cos π/8 の求め方
-
∫[0→∞] 1/(x^3+1)dx
-
数学の問題です。 写真の積分を...
-
積分∫[0→1]√(1-x^2)dx=π/4
-
数学IIIの積分の問題がわかりま...
-
数学Ⅱ 三角関数のグラフ y=-2co...
-
f(X)=[cosX]がなぜ不連続になる...
-
xsinx-cosx=0 の解と極限
-
重積分の問題を教えてください。
おすすめ情報