gooドクター有料プランが1ヶ月間無料!

重ね合わせの定理は非線形回路では成立しないようなのですが、何故ならないのかがよくわからないのでどなたか教えていただけないでしょうか?

A 回答 (1件)

単純に線型でないからです.


重ね合わせの原理を数学的に書くと
f(ax+by)=af(x)+bf(y) ・・・(1)
となりますが,これが成立する,関数f(x)は
f(x)=kx
となり,線型関係です.
つまり,重ね合わせの原理が成立と線型関係にあることは等価になります.

関数を非線形のものを選ぶと式(1)は成立しません.
たとえば2次だと,
g(x)=mx^2
として
g(ax+by)=(ax+by)^2=(ax)^2+(by)^2+2abxy
=a^2*g(x)+b^2*g(y)+2abxy
となって,xyの項がg(x)で書くことができません.
非線形は重ね合わせの原理が成立しないことと言い換えることも可能です.私もよくは知らないのですが,非線形の解析というのは非常に難しいものだそうです.

ただ,それでは線型解析できる対象が非常に狭くなってしまうので,たとえばg(x)の例では,このxに対して非常に小さなΔxを考え
g(x+Δx)=(x+Δx)^2=x^2+2*x*Δx+Δx^2
でΔx^2は非常に小さいものの2乗なので無視して
g(x+Δx)≒x^2+2*x*Δx
とすると変化分Δg(x)は
Δg(x)=g(x+Δx)-g(x)=2*x*Δx
という線型関係になり,以降解析ができます.
    • good
    • 0
この回答へのお礼

masudaya様
ご回答有難うございます。大変参考になりました。
どうも有難うございました。

お礼日時:2005/04/27 12:43

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング