
A 回答 (7件)
- 最新から表示
- 回答順に表示
No.7
- 回答日時:
高校範囲でも、
Σ[n=1→∞] a_n が収束するならば、その極限を S と置いて
lim[n→∞] a_n = lim[n→∞] Σ[k=1→n] a_k - Σ[k=1→n-1] a_k
= S - S
= 0.
その対偶をとれば、
lim[n→∞] a_n = 0 でないとき Σ[n=1→∞] a_n は収束しない
って話だけどな。
教科書にも、たぶん載ってると思う。
No.6
- 回答日時:
級数の極限 lim[m→∞]Σ[n=1→m]a_n が収束する時
lim[n=1→∞]a_n = 0
という意味だろうか?
高校の範囲では無理っぽいけど
大学生向けに説明してみます。
取り合えず、a_nを実数とすると
lim[n=1→∞]a_n = b なら、ある正の実数 ε にたいして
適当な N が存在して n > N を満たす全ての n で |a_n - b| < ε となる。
というのが収束する数列の極限の定義です。
b ≠ 0 の場合
ε < |b| となるように ε を選ぶと n > N では a_n の符号は変わらず、
その絶対値は必ず |b|-ε より大きくなるので、級数は発散します。
a_n が複素数の場合も成分で分けて考えれば
ほぼ同じ証明が使えます。
高校っぽく説明すると
a_n が ゼロでない b に十分近づくと
a_n を足す毎に級数は b くらい増えてしまうから
級数は増加あるいは減少を続けて収束しない・・・・・ かな。
なんとも怪しげな説明です(^^;
高校数学だとまっとうな説明は不可能かも。
No.5
- 回答日時:
>第n項が0以外に収束すると無限級数は発散すると言えるのですか?
これは言える。
>第n項は0に収束するけど無限級数は収束するとは限らないということは、無限級数が収束するとき第n項は0以外に収束するとは言えないということですか?
これは何が聞きたいのでしょうか?
美人だけど結婚できるとは限らないということは、結婚できる人はブスとは言えないということですか?
みたいな感じの質問ですけど、あなたならなんて答えるの??
No.3
- 回答日時:
収束する級数 ⊂ 項が0に収束する級数 ⊂ 項が収束する級数
ってだけの話だよ。発散するってのは、収束しないってことだから、
発散する級数 ⊃ 項が0に収束しない級数 ⊃ 項が発散する級数
でもあるね。
No.2
- 回答日時:
いちおうほそくしておくと
「各項が 0 に収束する」わけではない→級数は発散する
は (「発散する」=「収束しない」と解釈して) 真で
各項が 0 に収束する→級数は収束する
は偽.
No.1
- 回答日時:
「級数が収束する→各項は 0 に収束する」は真.
でもって「各項が 0 でない値に収束する→級数が発散する」も真. シンプルには
全ての項が 1 であるような級数
を考えてみるといい.
なお「0以外に収束する」を否定したときに「0 に収束する」にはならないことにも注意だ.
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 解析学の問題です。 「正項級数は収束する、あるいは正の無限大に発散することを示せ。」 単調増加列はそ 2 2022/12/16 05:06
- 数学 無限等比級数の収束条件について質問です 5 2023/12/10 00:37
- 数学 『数は実在するのか』 6 2023/06/04 15:15
- 数学 画像において、なぜk>1では絶対収束① k≦1でば条件収束②または発散する(正項級数an>0 ならば 15 2022/08/27 19:43
- 数学 画像において、なぜk>1では絶対収束① k≦1でば条件収束②または発散する(正項級数an>0 ならば 15 2022/08/27 19:43
- 数学 収束性の問題です。優級数定理を使いたいのですが、うまくいきません。どうかご教授ください。 次の関数項 4 2023/12/14 14:58
- 数学 1-1+1-1+…=? 10 2024/06/23 12:40
- 数学 一様収束するか判定してほしいです 3 2024/02/04 12:33
- 数学 『無限回の計算』 4 2023/06/07 17:49
- 数学 1-1+1-1+…=sqrt(2)って証明できるの?(解析接続)(グランディ級数) 解析接続はほぼ入 3 2023/06/08 12:35
このQ&Aを見た人はこんなQ&Aも見ています
-
2の810乗はいくつですか?
数学
-
これなぜ最後の不定形が0に収束するとわかるのでしょうか。a,b分かってそれを代入しても不定形になるだ
数学
-
数学 算数の通分について 分数を約分するときって 例えば分母が 8と6だったら8×6をして48 だか
数学
-
-
4
数学の約束記号の問題について教えてください。
数学
-
5
対数
数学
-
6
ギリシャ文字
数学
-
7
簡単なはずですが教えてください。
数学
-
8
ノンアルコール飲料
数学
-
9
t^tの数学記号は、なんて読みますか
数学
-
10
半径1の円の面積がπになることを、積分を用いて示せという問題について質問です。この円はy=√1-x^
数学
-
11
√2が無理数であることの証明では、背理法以外には方法はないのでしょうか?
数学
-
12
平方根の語呂合わせで「産婆さん妊娠」っていう語呂合わせがあったと思うのですが、これはルート何でしたっ
数学
-
13
円1:x²+y²=4と円2:(x-2)²+y²=1の交点を求めようと思って円1の方程式を変形してy²
数学
-
14
a+b=1のとき a²+b² > ab 解説お願いします
数学
-
15
質問したい事が2つあります。 ①、以前に質問した2024.5.8 08:24の質問の2024.5.9
数学
-
16
2024.8.20 18:17にした質問の、 2024.8.28 15:15の解答の 「g(z)=t
数学
-
17
高校数学
数学
-
18
平方根 √の中の引き算
数学
-
19
2の48乗はいくつ?
数学
-
20
添付している画像の積分が解けません
数学
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
二重和
-
複素数に拡張したタンジェント...
-
これって①番の公式を使うのでし...
-
全体100人のうちリンゴ派90人み...
-
確率の質問です
-
純実(purely real)とはどんな状...
-
グラフの作成に便利な、
-
フラッシュ暗算ってそろばん経...
-
この増減表を求める問題で微分...
-
媒介変数 x = t + 1/t-1 , y = ...
-
f(z)=(z^2-1)のテイラー展開と...
-
ヒット&ブローゲーム(数あて...
-
九星気学では、人の生まれた年...
-
画像の問題の(2)で質問です。 ①...
-
行列の乗算の計算の仕方を教え...
-
mx-y-m-1=0,x+my-2m-3=0の交点P...
-
この増減表を求める問題で微分...
-
n次交代式はしたの写真のように...
-
34533とはどういう意味でしょう...
-
4500と3000を1:9と3:7とか比...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(z)=(z^2-1)のテイラー展開と...
-
中高で数学をやる意義は? と聞...
-
二重和
-
誤差の大きさ
-
確率の質問です
-
123を使って出来る最大の数は?
-
【数学の問題】男女4vs4の合コ...
-
媒介変数 x = t + 1/t-1 , y = ...
-
2025.2.17 02:11にした質問の延...
-
演算子法についての式変形について
-
三つの複素数の位置関係
-
クレメールの公式について教え...
-
2.2%は分数で表すと22/1000、約...
-
皆既日食について
-
高1数学二次関数の問題です!
-
一番なんですけど、 等比数列だ...
-
数学と言うか数字の面白さ
-
絶対値の中が0以上ならそのまま...
-
これなに
-
数学
おすすめ情報