親子におすすめの新型プラネタリウムとは?

質問ですが、
双安定マルチバイブレータにおいて、入力波形の周波数と出力波形の周波数はどのような関係になりますか?
ネットや書籍で調べているのですが、いろんな事が難しく書いてありなかなかわかりません。よかったら、上記の事だけを簡潔に教えていただけませんでしょうか。

A 回答 (3件)

双安定マルチ(bi-stable multi vibrator)は、フリップフロップの中でも、T(=toggle) Flip Flopと呼ばれるものです。


したがって入力は1端子です。
入力2パルスで出力1パルスになります。

※ 使用例
周波数は安定しているがデューティ比が50%ではないパルスを双安定マルチに通すと、デューティ比50%で周波数が半分のパルスを得られる。
何が何でもデューティ比50%が欲しいときに使用。
    • good
    • 0

双安定マルチバイブレータは、フリップフロップの事で、入力波形に関わらず、周波数は1/2になります。

波形は矩形波が出力されます。
    • good
    • 2

双安定マルチバイブレータはフリップフロップですよ。


入力周波数というのが、フリップフロップのどの端子に入る信号か不明です。
フリップフロップによる分周回路のことを言っておられるなら、出力の周波数は1/2です。
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qマルチバイブレータについて

各マルチバイブレータについてのご質問になりますが、非(無)安定マルチバイブレータ、単マルチバイブレータ、双安定マルチバイブレータの、各それぞれの応用例を、教えてくださいm(__)m。
どういったものに使用されているのか教えてください。
是非お願いいたしますm(__)m。

Aベストアンサー

こんにちは。
非安定マルチ→発振回路、分周回路

  あまり高い安定度を必要としない周波数源として使われる事が多いよう
  です。またベース(ゲート)回路に発振周波数の整数倍の周波数を入力
  すると入力信号に同期した整数分の一の方形波を取り出す事ができます。

単安定マルチ→トリガパルス整形回路を動作させる信号をアナログ信号から
  パルスを作るチャタリング防止接点などの振動で細かい沢山のパルスが
  発生したとき、単安定マルチの時定数以下の細かいチャタリングパルス
  をキャンセルできる。

双安定マルチ→計数回路、分周回路、記憶回路、方形波への波形整形
  コンピューターで一番使われてる回路はこれでしょうね。

こんなところでいかがでしょうか。

Qマルチバイブレータの周期の測定の計算値との比較

一番簡単な単安定マルチバイブレータの回路で実験をし、単安定マルチバイブレータ(R=68KΩ,C=2.2μF)ではトランジスタのベース・エミッタ電圧、コレクタ・エミッタ電圧の波形を測定したのですが、測定結果はT=75msで、計算値T=0.7CRと値が大幅にずれてしました。これは何故なんでしょうか?実験の行い方が悪かったのでしょうか?また、無安定マルチバイブレータでも、Tが計算値と一致しない現象が起きてしまったのですが、これも単安定マルチバイブレータと同じ理由で値が一致しないのでしょうか?

Aベストアンサー

つーか、温度によって激しく変動もしますよ。無安定よりかは安定すると思いますが
それでもトランジスタを使っている限り、磁気や温度などで変動しますので・・・・

Qマルチバイブレータのパルスについて

単安定マルチバイブレータ(コレクタ・ベース結合)のパルス式

τ=0.7CR

があります。これの由来?何故この様な式になるのかがわかりません。詳しく教えて頂ければ幸いです。

Aベストアンサー

 
 
 (以下はマルチバイブレータの過去回答からの抜粋改編です。)


 マルチバイブレータの単段。回路的には固定バイアス方式のコンデンサ結合増幅回路ですが、大振幅のスイッチング動作をします。 単安定型では右側トランジスタのコレクタから左側Trのベースに直流的に(単に抵抗で)結ばれます。 無安定型では図と同様のコンデンサとRbによって結ばれます。


      ┯     ┯Vcc
      |     |
      Rc     Rb  
      |     |   C…
      C──C─┴──B
     …B          E
      E           ┷
       ┷

(図が折り返らないように画面幅を広くして見てください。)


..................................................................... Vcc
   ↑
   |
 Vcc-Vbe
   |
   |                Vbe(on)約0.65V
 _↓___          __↓
........↑..........│......................../..................グランド
   |     │      /    ↑
   |     |     /
Vcc-Vce(s) |    / 
   |     | /   Vccに向かって指数変化 
   ↓     |/   時定数τ=CRb





 左側の駆動役のトランジスタのコレクタ波形は、オフではVcc、オンではVces(sは飽和)ゆえ、振幅はVcc-Vcesです。 この振幅がコンデンサを素通り的に渡って右側トランジスタのベースを負に引き下げます。べースは今までオンしていた電圧 Vbe(0.65V程度)であったのが、そこから急激に負に振られます。
その直後からRb経由で充電が始まります。コンデンサの充放電の式は、お馴染みの
  V=Vo・exp(-t/τ)
です。(*)
初期値Voに相当する電圧は、充電の最終到達値はVccなので それとの差を図から読めば簡単です。
  Vo = Vcc-Vbe + Vcc-Vces = 2Vcc-(Vbe+Vces)
です。
右トランジスタのベースが再びオンになる電圧は、これも最終値Vccから測って Vcc-Vbe ゆえ、これらを充放電の式に入れると、
  Vcc-vbe=(2Vcc-Vbe-Vces)・exp(-t/τ)
となります。
この式を満たすtが、トランジスタがオフしてるパルス幅です。それをtwと書くと

  exp(-tw/τ)=(Vcc-Vbe)/(2Vcc-Vbe-Vces)
  tw =τlog{(2Vcc-Vbe-Vces)/(Vcc-Vbe)}
logは自然対数。
単安定の場合はこれがそのまま出力パルスの幅です。
無安定の場合の周波数は
  f=1/(2tw)

 ところでシリコンの小信号Trでは Vbe≒0.65V、Vces≒0.2V 程度です。古風な12V電源とか5V電源の場合はこれらをゼロとした近似式がよく用いられます。すなわち。
  tw≒τlog(2)
  f≒1/( 2τlog(2) )



(*)
これがコツ。
最終状態から測れば、式は常に exp(-t/τ)になるのです。
(1-exp(-t/τ))は使わなくともよいのです。




↓抜粋もと
http://oshiete1.goo.ne.jp/kotaeru.php3?q=692084&rev=1
 
 

 
 
 (以下はマルチバイブレータの過去回答からの抜粋改編です。)


 マルチバイブレータの単段。回路的には固定バイアス方式のコンデンサ結合増幅回路ですが、大振幅のスイッチング動作をします。 単安定型では右側トランジスタのコレクタから左側Trのベースに直流的に(単に抵抗で)結ばれます。 無安定型では図と同様のコンデンサとRbによって結ばれます。


      ┯     ┯Vcc
      |     |
      Rc     Rb  
      |     |   C…
...続きを読む

Qマルチバイブレータ回路の動作原理

マルチバイブレータ回路がなぜ交互に電流を流すのかわかりません。どうやらコンデンサーに蓄えられている電荷量が変化しているらしいことはわかりましたが、「交互に」というのがいまいち理解できません。どなたかわかりやすく説明してください。お願いします。

Aベストアンサー

 
 
>> コンデンサ電荷の変化らしいのはわかった、 しかし交互というのがいまいち <<


 ↓これですね。
http://www.technologystudent.com/images4/multi2.gif


1.
 ↓弛張(しちょう)発振を理解するときの定番のモデルです。
http://www.suginami.ac.jp/club/pcc/hoshino/img/shishi.GIF
中央で静止しないわけは、流れ出す慣性のために重心移動の変化に即応できず、行き過ぎる(水の捨て過ぎと補充し過ぎ)るからです。チョロチョロ流し込む時間が振動の周期になってます。
これを二つ背中合わせにした↓が、マルチバイブレータのモデルです。
http://www.bousaihaku.com/bousaihaku2/images/announce/prevention/18_2.jpg
水は全部こぼれる=徹底した行き過ぎです。 これも下図のように重心移動してます。B側が下がるとBの水が全部こぼれ、Aに注水されるので重心がA側にじわじわ移動、やがてシーソーが反転します。
 |
 |        ┌→→●B
 |A●→→→→┘
  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄変位
 |
 |     ┌←←←←●B
 |A●←←┘
  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄変位
 一般に、動きに行き過ぎ(あるいはガタ)がある系なら何でもこのタイプの発振を起こせます。例えば電磁石ベルは鐘を打つハンマーの慣性質量とコイルのインダクタンス(電気的慣性)が共に行き過ぎ役を担当してます。



2.
 ↓回路図
http://tsystemselectronics.com/images/products/astable-multivibrator.jpg
http://www.mononagrove.org/mgonline/electronics%20stuff/talkingelectronics/Page%2017_files/Multivibrator-flash-complete.gif

( 余談ですが念のため; もともとFlipFlopはambiguousな日常語で自走マルチをも含意してます。なのでformalな表現では、端的に bistable circuit 双安定回路 と言います。 )
閑話休題。


 半分の図です。

  電 源 電 圧
  |    │  
  Rc    Rb↓ Rb電流が水チョロチョロ。
  |    |
  |    |   右トランジスタのベース。
  ├─C─┴─┐ ベースは整流器であり
  |       │ 電位は+側に上昇できない。
  \        ▽ しかしマイナス側に下が
  |       | るのは自由。
  ┷       ┷
左側のトランジスタ。
接地したり離したりしている。
上図は離れてるのでCはRcで充電される。
その充電電流はRc→C→ベース→グランド。
Rcは小さくしてあるので充電は素早くて
電位は 短時間に電源電圧まで上昇する。


  ↓ そのあと左トランジスタがオンすると、


  電 源 電 圧
  |    │  
  Rc    Rb↓ Rb電流は水チョロチョロ。
  |    |
  |    |   
  ├─C─┴─┐ ベースは整流器であり
  |       │ 電位は+に上昇できないが
  |        ▽ マイナス側に下がるのは
  |       | 自由。
  ┷       ┷
左トランジスタがオンすると、
(*)
コレクタの電圧が電源電圧からグランドに急降下す
るので Cを通じて 右のベース電位も同じく急降下する。
今までプラス電位ギリギリだったのがマイナス電位に
急降下するので右トランジスタはオフする。
その後、
ししおどしの水チョロチョロと同じく CはRbでチョロ
チョロ充電される。ベースの電位が回復すると今度は
右トランジスタがオンして 上記の(*)の所に戻り、
左右の立場が入れ替わって繰り返す。


 以上です、電子回路に慣れてない人にとっては、Cが縦になってないだけで もうワケワカかも知れませんが。




3.
上記の「電圧が急変化するとCを通じて反対側も同じ変化が…」の理由の説明。
キャパシタ両端の電位差 V と蓄積電荷量 Q は単純に比例関係です。
  V ∝ Q
時間微分して
  dV/dt ∝ dQ/dt = 電荷の変化速度
右辺はキャパシタを通り抜ける電流であることはおわかりと思います。
  dV ∝ (通る電流)dt  …(3.3)
式を 『 もし通る電流が一定な状況ならば、変化時間dtが小さいほど電圧変化dVは小さい 』 と読みます。
 これによれば、
トランジスタが急激にオンして急降下する電圧波形が キャパシタの片端に加わると (両端の電圧は殆ど変化しないので) 反対端にほとんど同じ急降下波形が現れる、となります。 その際の「通る電流」は 急降下電圧振幅と キャパシタの反対側に居るRbで決まります。 端的に言うと「キャパシタは変化分だけを通す、直流は通さない」です。


 ということで、
意外でしょうが この瞬間のキャパシタ電荷は殆ど不変ですので、電荷∝水量 のアナロジーは成り立ちません。そのアナロジーにこだわると正しい理解に至れませんので要注意です。
 「しし脅しの水量」に対応してるのは「キャパシタの電荷」じゃなくて「キャパシタ片側をグランド基準に見た電位」なのです。その正負に応じてトランジスタスイッチがオン/オフします。 また、「水が全部こぼれる行き過ぎ」に対応してるのは「ベースの電位が負に大きく急降下する」ところです。




4.以下余談

トランジスタのスイッチ動作は、
部屋の壁に付いてる電灯のスイッチに似てまして、
http://www.411homerepair.com/ideas/Electrical_Wiring/pic/wallSwitch.gif
http://eed.stef.teicrete.gr/labs/epsl/site%20pic/clipart_wallswitch.jpg
指で上下させる出っ張りがベースの電位のようなものです。
  グランドより上だと接点がつながる。
  グランドより下だと接点が離れる。
と、
単純なものです。


 発振回路のタイプは、
バネと質量の共鳴振動を利用する Harmonic Oscillator、
行き過ぎや弛(たる)みを利用する Relaxation Oscillator
に大きく二分されます。
前者の代表例は水晶。原子レベルの結晶格子の振動そのものではなくマクロな形状の共振です。
後者の和名は 弛張(しちょう)発振で、代表例がこのマルチバイブレータです。


 マルチバイブレータ回路は「最初の一撃」がないと動き始めません。それは電源の素早い立ち上がりです。もし電源電圧がゆっくり上昇すると起動しません。そのプロセスは;
 電源の上昇による d(電源電圧)/dt の電流がキャパシタを通って両トランジスタのベースに流れ込み、両トランジスタは普通のアンプの状態になります。こうなれる程度にベース電流がないと、つまり電源電圧変化が速くないと、起動できません。
 で、アンプなので両方とも相手から来たのを反転拡大して相手に渡します(コンデンサは変化するものはそれなりに通します)ので、些細な動きが加速的に拡大されて、大きな動き つまりどっちか片方が完全オンで他方が負けて完全オフになります。これが起動です。
 この「些細な動きの急拡大」は反転のたびに起きます。

 抵抗値が 十分に Rc<Rb であることも必要です。
そのわけは、オフ時の Rc充電が終わる前にオンになると コレクタ振幅が小さい。 続くRb充電の時間内に前回よりRc充電が不足だと、次回の振幅がさらに減り、やがて発振が止まってしまうからです。

 なお、「最初の一撃」が無くても立ち上がれる弛張型もあります。


 エレクトロニクス的な解説は検索すれば豊富にありますが不肖私の回答の中から;
↓周波数の詳細を話してたようで。
http://oshiete1.goo.ne.jp/kotaeru.php3?q=692084&rev=1
↓「木を語るのか森を語るのか」
http://oshiete1.goo.ne.jp/kotaeru.php3?q=1386547&rev=1
 
 

 
 
>> コンデンサ電荷の変化らしいのはわかった、 しかし交互というのがいまいち <<


 ↓これですね。
http://www.technologystudent.com/images4/multi2.gif


1.
 ↓弛張(しちょう)発振を理解するときの定番のモデルです。
http://www.suginami.ac.jp/club/pcc/hoshino/img/shishi.GIF
中央で静止しないわけは、流れ出す慣性のために重心移動の変化に即応できず、行き過ぎる(水の捨て過ぎと補充し過ぎ)るからです。チョロチョロ流し込む時間が振動の周期になってます。
これを二つ背中合...続きを読む

Q電圧増幅度の出し方

入力電圧と出力電圧があってそこからどうやって電圧増幅度を求めるんですか?
電圧増幅度を出す式を教えてください

Aベストアンサー

増幅回路内の各段のゲイン、カットオフを求めて、トータルゲイン及びF特、位相
を計算するという難しい増幅回路の設計にはあたりませんので、きわめて単純に
考えればいいですよ。

電圧利得(A)=出力電圧/入力電圧

となります。

これをデシベル(dB)で表すと

G=20LogA(常用対数)

で計算できます。

ご参考に。

QCR発振の原理

トランジスタのCR発振の原理について説明が出来る方、おおまかでもよろしいのでお願いします。

Aベストアンサー

No.2のymmasayanです。補足です。
移相回路で180度遅らせると書きましたが、参考URLの場合は180度進ませるです。
(移相回路がCRの接続の仕方で2種類あります)
進みでも遅れでも180度で反転ですので結局は同じことなのですが。

Q移相形CR発振回路について教えてください。

移相形CR発振回路についてできれば詳しく教えてください。

Aベストアンサー

以前にこの欄で同様の質問に答えた事があります。
読んで見てください。わかりにくければ補足下さい。

参考URL:http://oshiete1.goo.ne.jp/kotaeru.php3?q=165460

Qベース変調方式におけるLC共振

ベース変調方式におけるコレクタのLCをRに変えたとき、なぜ上の波形が切れてしまうのかを、考えています。

以下に同じような質問があったのですが、
http://okwave.jp/kotaeru.php3?q=1798873
上記の回路上で、コレクタのLCをRに変えたとき、上の波が切れてしまうことをうまく説明することができません。

分かる方がいらっしゃいましたら、是非是非ご教授の方をお願いいたします。

Aベストアンサー

>回路上でLCをRに変えると、0.6Vのラインで切れてしまう原因をうまく説明できないのです。

多分オシロスコープで波形を観測しているのだと思いますが 直流で測定していますか、交流ですか

直流ならば電源電圧との関係を見ることができますが、交流ですと波形の観測しかできません

直流で測定すれば、バイアスがかかった波形が観測できます(最大/最小値)
電源電圧でクリップされていてもそれなりに判ります

交流ですと、0Vに対する正負電圧になりますので、電源電圧でクリップされていても、単にクリップされていることしか判りません

うまく説明できませんが、参考にしてください

Qマルチバイブレーターについて

各マルチバイブレータについての質問で、非安定マルチバイブレータ,単安定マルチバイブレータ,双安定マルチバイブレータはそれぞれ身近なところで、どんなところに使われているのか教えてください。お願いします

Aベストアンサー

[補足要求]「あなたの質問は、『宿題の丸投げ』のようにも見受けられるのですが、違いますよね?」
[この回答への補足]「違います」
……というやりとりが(私の脳内で)行われましたので、ご回答します。

以下、栃木県立栃木工業高等学校電子科のサイトを参考にさせて頂きますと、

・非安定マルチバイブレータ:
  無安定マルチバイブレータとも呼ばれ、方形波パルスの発振器として使われます。例えば自動車のウィンカーの点滅など。

・単安定マルチバイブレータ:
  一安定マルチバイブレータとも呼ばれ、一定幅のパルスを作るのに利用されています。

・双安定マルチバイブレータ:
  フリップフロップとも呼ばれ、コンピュータの記憶回路などに利用されています。

詳しくは
 http://www.tochiko.ed.jp/gakka/D/MULTI.html
をご覧下さい。

なお、質問者さんと全く同じ質問が、例えば
  http://okwave.jp/qa135180.html
で出されていますので(01/09/14)、参考になると思います。検索してみましょう。
また、「マルチバイブレータとは」でネット検索すれば、このQ&Aサイトで質問を立てるよりもずっと早く、より正確で詳しい回答がたくさん見つかると思いますよ。念のため。

[補足要求]「あなたの質問は、『宿題の丸投げ』のようにも見受けられるのですが、違いますよね?」
[この回答への補足]「違います」
……というやりとりが(私の脳内で)行われましたので、ご回答します。

以下、栃木県立栃木工業高等学校電子科のサイトを参考にさせて頂きますと、

・非安定マルチバイブレータ:
  無安定マルチバイブレータとも呼ばれ、方形波パルスの発振器として使われます。例えば自動車のウィンカーの点滅など。

・単安定マルチバイブレータ:
  一安定マルチバイブレー...続きを読む

Q計算値と理論値の誤差について

交流回路の実験をする前に、ある回路のインピーダンスZ(理論値)を計算で求めたあと、実験をしたあとの測定値を利用して、同じ所のインピーダンスZ(計算値)を求めると理論値と計算値の間で誤差が生じました。
そこでふと思ったのですが、なぜ理論値と計算値の間で誤差が生じるのでしょうか?また、その誤差を無くすことはできるのでしょうか? できるのなら、その方法を教えてください。
あと、その誤差が原因で何か困る事はあるのでしょうか?
教えてください。

Aベストアンサー

LCRのカタログ値に内部損失や許容誤差がありますが、この誤差は
1.Rの抵抗値は±5%、±10%、±20% があり、高精度は±1%、±2%もあります。
2.Cの容量誤差は±20% 、+50%・ー20% などがあり
3.Lもインダクタンス誤差は±20%で、
3.C・Rは理想的なC・Rでは無く、CにL分、Lに抵抗分の損失に繋がる成分があります。
これらの損失に繋がる成分は、試験周波数が高くなると、周波数依存で増大します。
また、周囲温度やLCRの素子自身で発生する自己発熱で特性が変化します。
測定器や測定系にも誤差が発生する要因もあります。
理論値に対する測定値が±5%程度発生するのは常で、実際に問題にならないように、
LCRの配分を工夫すると誤差やバラツキを少なく出来ます。
 


人気Q&Aランキング