4次方程式の解はフェラリの公式にて求まるらしいんですが、
本には
「ax^4+bx^3+cx^2dx+e=0(a≠0)
ξ=x+b/4aにより ξ^4+pξ^2+qξ+r=0に移す。
 後者の3次分解方程式 t^3-pt^2-4rt+(4pr-q^2)=0
 の1根をt0とすれば、ξは二つの2次方程式
  ξ^2±(√t0-p){ξ-q/2(t0-p)}+t0/2=0
 を解いて得られる。」
と書いてあったのですが、
不勉強のせいか、意味が全く判らず、対処しかねています。
どなたか、この意味を噛み砕いて、教えて頂けないでしょうか?
宜しくお願いいたします。

A 回答 (3件)

 


  ファラーリの解法はかなり複雑で、こんな簡単には説明できないのですが、あらすじの解法の手順を示しているのだと思います。これから、四次方程式の具体的な解法の式を理解しようとするのは少し無理があると思います。わたしも少し考えてみましたが、或る箇所で、どうしてこうなるのかが分かりません。記憶では、この部分の解法は、先に見つかっていたのか、または、ここがフェラーリの解法の要点なのか、おそらく、後が正しいのだと思えます。というのは、この部分が解ければ、後は、そんなに難しい話ではないからです。
 
  という前置きで、この解法プロセスの構造の説明をします。ただ、どうしてこうなるのか分からない所があると言うのは、上に述べた通りです。何が分からないのかも説明しますので、それ以上のことは、また調べられて、再度質問等されるのがよいと思います。いずれにしても、当時の最高水準の数学者がようやく解いたのですから、そんなに簡単に分かるものではありません。
 
  まず、準備として、次の展開式は正しいということを確認してください:
 
  (x^2+jx+k)(x^2+mx+n)=x^4+(j+m)x^3+(k+n+jm)c^2+(k+n)x+kn  式0)
 
  j,k,m,n は何でもよいのですが、他の式の記号と混同が起こらないように、こういう記号にしました。
 
  >ax^4+bx^3+cx^2dx+e=0(a≠0)             式1)
  >ξ=x+b/4aにより ξ^4+pξ^2+qξ+r=0に移す。    式2)
 
  これは、ξ=x+b/4a を式1)に代入すると、式2)が出てきます。従って、別に難しいことはありません。(何故、こういう変換を行うかというと、式2)のように、四次方程式を、「三次項のない四次方程式」に形を変えているのです)。
 
  >後者の3次分解方程式 t^3-pt^2-4rt+(4pr-q^2)=0  式3)
 
  実は、これが問題なのです。この式3)は、三次方程式になっています。色々考えたのですが、式2)の四次方程式を、どう変形すると、式3の三次方程式になるのか、わたしには分かりません。また、この部分が分かれば、四次方程式は解けたことになるのです、実質、この式2)から式3)への「分解」というのが、どういう手順なのかが問題になります。(わたしには、ちょっと分からなかったということです)。
 
  しかし、式3)に分解されるということを事実として認めましょう。また、そのようにして分解し、三次方程式にした時、この三次方程式の形が、式3)になるということも認めましょう。(本当は、どうしてこうなるのかの説明がいるのですが、最初に断った通り、これが解法の核心部分だと思え、かなり複雑な手順がいるのかも知れません。あるいは、わたしの考えが浅いので、分からないだけかも知れません)。
 
  >の1根をt0とすれば、ξは二つの2次方程式
  >ξ^2±(√t0-p){ξ-q/2(t0-p)}+t0/2=0
  >を解いて得られる。
 
  ここで、もう四次方程式は解けたと言っているのですが、どこが解けているのか、よく分かりません。式2)から式3)への移行によって、どういう風なことをしたのかが分からないのです。解説が合っていると、ここでも考えます。
 
  そうすると、何故二つの二次方程式の解が、四次方程式の解になるのか、という疑問が出てきます。これは、最初に、準備のため式0)を造っておきました。これを参照します。式0)をもう一度、左辺と右辺を逆に書くと、以下のようになります:
 
  x^4+(j+m)x^3+(k+n+jm)c^2+(k+n)x+kn=(x^2+jx+k)(x^2+mx+n)  式0a)
 
  左辺は、四次方程式です(係数がa=1ですが、これは本質的ではありません。係数が1でなくとも、全体をaで割ると、上のaの係数が1の方程式になるからです。
 
  そこで、上の式0)を眺めてみて考えますと、これは四次方程式を二つの二次方程式に分解している式だと分かるはずです。つまり、この四次方程式を解くには、右辺の二つの二次方程式を解けばよいのです。
 
  この場合、解くべき、四次方程式として、三次項を0にした、式2)を考えます。式2)は次のような形をしていました(もう一度写して来ます): 

  >ξ^4+pξ^2+qξ+r=0              式2)
 
  式0a)と比べてみると、j+m が 0 になっています。つまり、m = -j だということです。これを代入して、式0a)を書き直すと、次のようになります:
 
  x^4+(k+n-j^2)c^2+(k+n)x+kn=(x^2+jx+k)(x^2-jx+n)  式0b)
 
  ここの式0b)の x という変数は、式2)のξに当たるものです。両者の係数を比較すると:
 
  p=k+n-j^2
  q=k+n
  r=kn
 
  第一の式と第二の式から直ちに: q-p=j^2 → j=+/-(q-p)^(1/2)
  第二の式と第三の式から、kとnを解く二次方程式が出てきて、その解は:
  k=(q+/-√(q^2-4r))/2  n=(q-/+√(q^2-4r))/2  となります。
 
  すると、式0b)の二つの二次方程式は(x=ξとして):
 
  ξ^2+/-√(q-p)ξ+(q+/-√(q^2-4r))/2 = 0
  ξ^2+/-√(q-p)ξ+(q-/+√(q^2-4r))/2 = 0
 
  これだと二次方程式が四個ありますが、ξの解が出てくることは間違いありません。解は全部で8個出てくるのか、実は同じものになって全部で4個になるのかも知れませんが、ξ=x+b/4a の式で、x の解に戻し、元の四次方程式に代入してみると、正しい解が確認できます。
 
  変な話ですが、どこかで考え間違いをしているのかも知れませんが、三次方程式への式の分解なしで、また説明にあるような根 t0 の計算なしで、四次方程式が解けてしまうことになります。
 
  どこかで間違ったのかも知れませんが、これをアドヴァイスとして提示します。計算に間違いがなければ、これで四次方程式が解けていることになります。
 
  本来、説明として、式の形の意味は三次方程式への分解の時の規則で決まって来るのであり、何故二つの二次方程式に四次方程式が分解できるのかの説明だったのですが、結果として、三次方程式への分解なしに解けるということになりました。何かおかしいのか、とまれ、おかしいとしても、説明は、一応以上でしています。三次方程式への分解が分からないので、その後の項の値も、どうしてああなるのかよく分からなかったのです。
 
  (現在の考えでは、おかしさが見つけられません。もう一度考えて、何かおかしいことをしたのか考えてみます)。
 
    • good
    • 0
この回答へのお礼

出張に行っていて、返事が遅くなって申し訳ありませんでした。
大変参考になりました!
ありがとうございました。

お礼日時:2001/12/10 19:21

多分、下のURLが参考になるのではないかと思われます。



参考URL:http://www.imasy.or.jp/~yotti/equation.html
    • good
    • 0

 すみません,4次方程式の解法もフェラリの公式も大学レベルの数学も知らない一般人ですが,噛み砕くも何も全てお書きになっているように思いますが。



> ξ=x+b/4aにより ξ^4+pξ^2+qξ+r=0に移す。
 4次方程式 ax^4+bx^3+cx^2dx+e=0 (a≠0) の a, b を用いて ξ=x+b/4a(x=ξ-b/4a)とし,元の4次方程式に代入する。⇒ ξ^4+pξ^2+qξ+r=0 の形になる。

> 後者の3次分解方程式 t^3-pt^2-4rt+(4pr-q^2)=0 の
> 1根をt0とすれば、
 上で得られた3次方程式の p, q, r を使って3次方程式 t^3-pt^2-4rt+(4pr-q^2)=0 を作る。これの解の一つ(t0)を求める。

> ξは二つの2次方程式 ξ^2±(√t0-p){ξ-q/2(t0-p)}+t0/2=0
> を解いて得られる。
 上で得られた t0 と先の p, q を使って2つの2次方程式 ξ^2±(√t0-p){ξ-q/2(t0-p)}+t0/2=0 を作る。これを解く。2次方程式が2つであるから,解は4つ得られる。得られた解から,最初の ξ=x+b/4a により x(最初の4次方程式の解)を求める。


 いかがでしょうか。違ってますか?
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qx^4-4x^3+5x^2-4x+1=0でx+1/x=tとする時、 tで表すと?

宜しくお願い致します。

4次方程式x^4-4x^3+5x^2-4x+1=0…(*)に於いてx+1/x=tとする時、 
(*)をtで表すと?
という問題なのですがどのようになるんでしょうか?

Aベストアンサー

4次方程式(あるいはそれ以上の偶数次の方程式)で、係数の並びが

a*x^4 + b*x^3 + c*x^2 + b*x + a = 0 ‥ (1)

のような並びになっているもの(係数の並びから俗に回文的に
『シンブンシ方程式』とも呼ばれることも)ではいつもすることですが
中央の x の次数、つまり x^2 で全体を割ります。
そうすると (1) は

a*x^2 + b*x + c + b/x + a/x^2 = 0 ‥ (2)

のように変形できます。
ここで頭と尻尾を組み合わせるように (2) を並び替えます。

(a*x^2 + a/x^2) + (b*x + b/x) + c = 0
a(x^2 + 1/x^2) + b(x + 1/x) + c = 0 ‥ (3)

更に、一般に (x^2 + 1/x^2) = (x + 1/x)^2 - 2 が成り立ちますから
これを (3) に代入すれば

a(x + 1/x)^2 + b(x + 1/x) + c - 2 = 0 ‥ (4)

ここで t = x + 1/x を (4) に代入すれば、t に関する
2次方程式に変形できます。

----------------------------------------------------------------

実際の出題では、恐らく

4次方程式 x^4 - 4x^3 + 5x^2 -4x + 1 = 0 …(*) に於いて

(a) x + 1/x = t とするとき、(*) を t で表せ。
(b) t に関する2次方程式を解け。
(c) 4次方程式 (*) に於ける解をすべて求めよ。

となっていると思います。

上の変形を参考にやってみて下さい。

4次方程式(あるいはそれ以上の偶数次の方程式)で、係数の並びが

a*x^4 + b*x^3 + c*x^2 + b*x + a = 0 ‥ (1)

のような並びになっているもの(係数の並びから俗に回文的に
『シンブンシ方程式』とも呼ばれることも)ではいつもすることですが
中央の x の次数、つまり x^2 で全体を割ります。
そうすると (1) は

a*x^2 + b*x + c + b/x + a/x^2 = 0 ‥ (2)

のように変形できます。
ここで頭と尻尾を組み合わせるように (2) を並び替えます。

(a*x^2 + a/x^2) + (b*x + b/x) + c = 0
a(x^2 ...続きを読む

Q線形です (1)を x+3y-2z=0 x-2y+4z=0 x^2+y^2+z^2=1をもちいて 答

線形です
(1)を
x+3y-2z=0
x-2y+4z=0
x^2+y^2+z^2=1をもちいて
答えが+-の答えになりました
(2)では外せきが8,-6,-5となり
おおきさの5ルート5で割ると
+-の答えにはなりませんでした
どちらが正しいのでしょうか?

Aベストアンサー

外積からでてきた単位べクトルは、外積の定義から、ベクトルa、bに垂直ですよね。
だからそれと正反対のベクトルも、ベクトルa、bに垂直な単位ベクトルだから、これも答えに入れれば
よいのです。つまり外積から出した単位ベクトルの各成分に(-1)をかけた成分のベクトルも答えに
なります。そしてこうして出した2つのベクトルは、先に内積で出した2つのベクトルと一致します。

Q方程式 x(a^2+b^2)+y(c^2+d^2)+z(ac+bd)=0

x,y,zを定数とするとき、

 x(a^2+b^2) + y(c^2+d^2) + z(ac+bd) = 0

を満たす a,b,c,d はどのように求められるのでしょうか?

Aベストアンサー

>>x,y,zに定数が与えられたとき、
>>x(a^2+b^2)+y(c^2+d^2)+z(ac+bd)=0
>>(ad-bc)≠0
>>を満たす a,b,c,d を求める方法は…?ということです。

依然として、「条件不足である」という状態が解消されていないため、求めることは不可能です。

ただし、No.1の補足にあるように、「式を満たす a,b,c,d の組み合わせを1つ答えなさい」ということであれば可能で、No.3に答えの一例があります。(これは、a,b,c,dを先に決めて、与式が成り立つように後からx,y,zを決めましたが。)

質問の内容は何らかの問題の一部であるように見受けられるのですが、そもそも、問題(又は問題文)の全体像はどのようになっているのですか。

Q4次方程式 x^4+x^3+x^2+x+1=0 の解

x^4+x^3+x^2+x+1=0の解法を教えてください(できれば、省略なしで)。

Aベストアンサー

要するに1の5乗根を求める問題なのですが、このような相反方程式には典型的な解法があります。覚えておかれると有益でしょう。x=0は解でないことは明らかです。したがって方程式の両辺をx^2で割ってみて、
(※) x^2+x+1+1/x+1/x^2=0
となります。そこでy=x+1/xとおきます。ここがポイントです。そうするとy^2=x^2+1/x^2+2となるので、上の(※)式は
y^2+y-1=0
に書き直すことができます。これはただの二次方程式なので、これを解くと二つの実数解、α、βが出てきます。(これぐらいはご自身で計算してください)
そうするとy=x+1/xとおいたわけですから、y=αあるいはβというとことは、
x+1/x=αあるいはβ
ということです。両辺にxをかけてやると二つの二次方程式
x^2-αx+1=0とx^2-βx+1=0
が得られます。結局もとの方程式は上の二つの二次方程式の解を集めた4つの解(すべて虚数解)になるということが分かります。これもただの二次方程式なので簡単に解くことができるはずです。

...と思いましたが、chiropy様が回答くださったようですね。

ちなみに、実数解が存在しないことだけを言うなら次のようにすることもできます。x=1が解にならないことは明らかなので、x-1≠0ですから、両辺にx-1をかけてやります。そうすると
(x-1)(x^4+x^3+x^2+x+1)=0
となって、展開すればx^5-1=0、つまりx^5=1という5次方程式を得ることになります。当然x=1が解になるわけですが、これ以外に実数解はありえません。5乗して1になる実数は1だけです!というわけで、もとの方程式は5乗して1になる数のうち、実数でないものを求めなさい、ということとおんなじ問題なのでした。

要するに1の5乗根を求める問題なのですが、このような相反方程式には典型的な解法があります。覚えておかれると有益でしょう。x=0は解でないことは明らかです。したがって方程式の両辺をx^2で割ってみて、
(※) x^2+x+1+1/x+1/x^2=0
となります。そこでy=x+1/xとおきます。ここがポイントです。そうするとy^2=x^2+1/x^2+2となるので、上の(※)式は
y^2+y-1=0
に書き直すことができます。これはただの二次方程式なので、これを解くと二つの実数解、α、βが出てきます。(これぐらいはご自身で計算してください)
...続きを読む

QF(t)=(1+t)^2/(1-t^2t^3)=Σ(n=0~∞)(a_

F(t)=(1+t)^2/(1-t^2t^3)=Σ(n=0~∞)(a_n)t^nで(a_n)を定義する。
(a_n)の規則性を調べよ。
また,下記の表を作って,(a_n)/(a_(n+1))と「F(t)の分母=0」との関係を調べてみよ。

n  (a_n)  (a_(n+1)/a_n)
・   ・      ・
・   ・      ・
・   ・      ・
・   ・      ・

難しくて分からないので詳細に教えてもらえたらと思います。よろしくお願いします。

Aベストアンサー

t^2t^3=t^5ならば
F(t)=(1+t)^2/(1-t^5)
=(1+2t+t^2)Σ_{k=0~∞}t^{5k}
=Σ_{k=0~∞}(t^{5k}+2(t^{5k+1})+t^{5k+2})
=Σ_{n=0~∞}(a_n)t^n
a_{5k}=1
a_{5k+1}=2
a_{5k+2}=1
a_{5k+3}=0
a_{5k+4}=0
n (a_n) (a_(n+1)/a_n)
5k , 1 , 2
5k+1 , 2 , 1
5k+2 , 1 , 0
5k+3 , 0 , 不定
5k+4 , 0 , ∞


人気Q&Aランキング

おすすめ情報