先日、「cos(有理数*2π)=有理数となるのはどういったときか」
http://oshiete1.goo.ne.jp/kotaeru.php3?q=2212683
という質問に、親切なご回答を頂きました(感謝です)。
結果だけをまとめますと、
「mとnを互いに素な自然数とする。
cos{(m/n)π}が有理数となる⇔n=1,2,3
sin{(m/n)π}が有理数となる⇔n=1,2,6
tan{(m/n)π}が有理数となる⇔n=1,2」
ここで、新たに疑問が浮かびます。
http://www.iis.it-hiroshima.ac.jp/~ohkawa/math/m …
の問題177で、
「a(但し、0<a<1/4とする。)を有理数とする時、tan(aπ)は無理数である。」
がGaussの整数環がPIDで有る事を使えば、容易に証明出来るとあります。
(僕が考えた証明、多分不備あり。)
tan(aπ)が有理数とすると、
tan(aπ)=y/x(x,yは互いに素な自然数)とかける。
Gaussの整数x+iyを考えると、原点との線分がx軸とのなす角度は、
arg(x+iy)=aπ
有理数a=p/qとして、Gaussの整数x+iyをq乗すると、
arg(x+iy)^q=aπ*q=pπ
つまり、
(x+iy)^q=実数
http://members.ld.infoseek.co.jp/aozora_m/suuron …
に書かれていることから、両辺を因数分解すると、単数倍の違いを除いて一意的。
右辺が奇素数を因数に持つとき、上記サイトの定理40より、
それはガウス素数か、(a+bi)(a-bi)の形になるが、左辺はそれを因数にもたないから不適。
右辺が2を因数に持つとき、上記サイトの定理40の上のコメントより、
それは単数倍の違いを除いて2=(1+i)(1-i)なので、左辺は、x+iy=1+iなどの場合に限られる。
このとき、0<a<1/4では、tan(aπ)=y/x=1に矛盾。証明終わり。
この問題は、aを有理数とするとき、tan(aπ)も有理数であるのは、a=整数or奇数/4と主張しています。
これを使って、Gaussの整数の観点から、cos(aπ)が有理数である条件を求めれないでしょうか?
A 回答 (1件)
- 最新から表示
- 回答順に表示
No.1
- 回答日時:
質問(続きのほう)が削除されていたのでこちらに回答しておきます。
無理性などの考察をしたいときは解析数論を使うのが常道です。Lindemannの定理を使えばsin(0以外の代数的数),cos(0以外の代数的数),tan(0以外の代数的数),sinh(0以外の代数的数)などはいずれも超越数になることが証明できます(したがって特に無理数)。参考URLをご覧ください。また、cos(0以外の有理数)などが無理数であることだけなら、すでに削除された質問で挙げられていたリンク先にあるように、三角関数(あるいは双曲線関数)の連分数展開を用いて、無限に続く有理連分数が無理数であることを用いれば直ちに結論が得られるでしょう。連分数展開から超越性を読み解くのはたぶん難しい(というか不可能?)だと思うので、この方法では無理性しか出てきませんけれど(とはいっても巡回連分数になるかならないかで、二次無理数であるかどうかだけなら判別できる)。
またcos(有理数*π)は必ず代数的数になります。それは明らかですよね。つまりcos(π*n/m)を求めたければ複素平面上の単位円の円周を2m等分したうちのn番目の座標を求めることに等しいので、ようするに2m次方程式x^{2m}-1=(x^m-1)(x^m+1)=0を解けばよいことになります。あるいはm倍角の公式からm次方程式を解けばよい。ときどきこの方程式が簡単に解けるmがあります。たとえば17や257や65537など(フェルマー素数)だと、ガロア理論によってこれは平方根のみで計算できる、ということがわかります。いずれにしても代数方程式の解だから、必ず代数的数になるわけです。また、これは円分方程式と呼ばれる、特にガロア群が巡回群になる方程式なので、ベキ根と四則演算のみで具体的に解を書くこともできます。cos(2π/7)などが表記できる、というわけです。またcos(2π/11)なども実際に求めることができます。ただ、後者の場合、解ける5次方程式を解く、という作業が必要で、これはなかなかの難問です。歴史的にはファンデルモンドが初めて解決しました。
Gauss整数を使ってcos(aπ)が有理数ということに関しては、別の回答者の回答を待ちたいと思います。
参考URL:http://home.p07.itscom.net/strmdrf/basic54.htm
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 p,qを整数とし、f(x)=x^2+px+qとおく。 有理数aが方程式f(x)=0の1つの解ならば、 3 2023/05/01 21:45
- 数学 数学の問題についてです。 この問題は背理法による証明の問題なのですが、 写真右上の赤線「rを有理数と 2 2022/06/28 16:28
- 教育学 数学の問題についてです。 この問題は背理法による証明の問題なのですが、 写真右上の赤線「rを有理数と 1 2022/06/28 16:26
- 数学 2次以上の多項式g(x)であって, 任意の無理数に対して無理数の値を取るものは存在しないことを示せ. 8 2022/06/27 11:28
- 数学 この証明は高校数学の範囲でできますか?数1 数と式 5 2023/04/06 09:24
- 数学 当方高校生ですので、高校数学で理解出来る回答をお願いします。 実数係数の3次式f(x)で、 ・f(x 2 2022/10/07 18:38
- 数学 極限が無理数とか有理数になる 5 2023/02/19 04:07
- その他(教育・科学・学問) 関数、写像について 1 2022/04/10 23:45
- 数学 √nが有理数ならばnが整数 証明 なぜ √nが有理数ならばnが整数の証明の解答です。わからない部分が 2 2022/08/04 09:41
- 数学 教科書が書き換わりますか 10 2023/06/15 18:58
このQ&Aを見た人はこんなQ&Aも見ています
-
好きな人を振り向かせるためにしたこと
大好きな人と会話のきっかけを少しでも作りたい、意識してもらいたい…! 振り向かせるためにどんなことをしたことがありますか?
-
人生最悪の忘れ物
今までの人生での「最悪の忘れ物」を教えてください。 私の「最悪の忘れ物」は「財布」です。
-
自分独自の健康法はある?
こうしていると調子がいい!みたいな自分独自の健康法、こだわりはありますか?
-
【選手権お題その3】この画像で一言【大喜利】
とあるワンシーンを切り取った画像。この画像で一言、お願いします!
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
cos(有理数*2π)=有理数となるのはどういったときですか
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【選手権お題その3】この画像で一言【大喜利】
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・ちょっと先の未来クイズ第6問
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
二等辺三角形においての余弦定...
-
1+cosθをみると何か変形ができ...
-
cos2x=cosx ってなにを聞かれ...
-
長方形窓の立体角投射率
-
eの2πi乗は1になってしまうんで...
-
(cosθ+isinθ)^2=cos2θ+isin2θ ...
-
e^2xのマクローリン展開を求め...
-
∮sinθcos^2θを置換積分なしで =...
-
数学の問題です。 辺AB、BC、 C...
-
fn(x)の式がよくわかりません
-
媒介変数表示の2重積分の問題です
-
四角形の対角線の角度の求め方...
-
0 ≦θ ≦πのとき cos(2θ+π/3)=cos...
-
三角関数
-
cos60°が、なぜ2分の1になるの...
-
角の三等分線の長さ
-
cos(2/5)πの値は?
-
cos(有理数*2π)=有理数となるの...
-
(cosx)^8の積分
-
【数学】コサインシータって何...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
eの2πi乗は1になってしまうんで...
-
1+cosθをみると何か変形ができ...
-
cos(2/5)πの値は?
-
数学の質問です。 0≦θ<2πのとき...
-
フーリエ級数|cosx|
-
△ABCにおいてAB=4、BC=6、CA=5...
-
cos2x=cosx ってなにを聞かれ...
-
e^2xのマクローリン展開を求め...
-
複素数の問題について
-
三角関数で、
-
角の三等分線の長さ
-
積分
-
0 ≦θ ≦πのとき cos(2θ+π/3)=cos...
-
cosθやsinθを何乗もしたものを...
-
二等辺三角形においての余弦定...
-
cos60°が、なぜ2分の1になるの...
-
高校数学 三角関数
-
1/ a + bcosx (a,b>0)の 不定積...
-
長方形窓の立体角投射率
-
複素数zはz^7=1かつz≠1を満たす...
おすすめ情報