
No.4ベストアンサー
- 回答日時:
>判断基準みたいなものがあるのでしょうか
これは状況に応じて変わる問題ではないかと思いますね。
私は中学・高校の数学教育に関わっていますが、このあたりで(数学教育の中での扱い)は仰るように「~のとき」と指定されている場合は条件問題なのでそれ自体が同値性の全体にかかる条件だ、と解していると思います。
計算問題でも式変形などは同値変形が基本ですが、式変形で「~のとき」とついている場合があります。この場合も、「~のとき」は全体にかかる条件と解されるので逆にした時、「~のとき」をも含む、というものでは必ずしもありません。
他に、軌跡の問題ではしばしば逆の証明を「明らか」として省略します。
総じて「~のとき」を含む命題では「~」の部分を同値性ではなく条件と考えています。このあたりを明確にすると#1さんの答になるのですが、通常言わなくても明らかなので、同値性そのものの証明の場合以外は書かないだけだと思います。
No.6
- 回答日時:
あ、そうですね。
質問文を読み返すと「...sinθcosθの値...」ですので、これなら最初に与えられている値を使って計算するだけですね。No2,No3の方が書かれている通りでしょう。難しいのは「例題:(1+x)^nの展開をしたときのx^(12)の係数が62985,x^(13)の係数が38760となるような自然数nを求めよ」なんていうタイプですね。まあ、こんなのは悪問と言えば悪問ですし、実際入試なんかでこの同類の問題が出たかは私の頭にははっきりとは残っていないのであまり偉そうには言えませんが、単に値を求めるというだけでも結構しんどいときがありますね。(ちなみにこの例題は「解無し」です)
No.5
- 回答日時:
>>その辺の判断がどうもあいまいなのでそうした点を教えて
パターン化するのは無理なのではないでしょうか。
かと言って、全部書き出す(「問題に○○と書いてあったら、□□と判断する。」など)のも無理なので、結局は、多くの問題をこなして自分なりにセンスを身に付け、出会う問題毎に自分で判断するしかないのでは?
いろんな問題をやっていれば、「同値性を求めているのかいないのか」は判ってくるような気がします。
(と言ってしまうと、身も蓋もないかも知れませんが)
No.3
- 回答日時:
そもそも、この例題って、同値性を求めていませんよね。
「sinθ+cosθの値が1/2ならば、sinθcosθの値は?」
と聞いているだけで、「sinθcosθがその値の時に、sinθ+cosθの値が1/2であり、かつ、それ以外の値にはならないことを保証せよ。」とは言ってません。
したがって、
sinθ+cosθ=1/2
→(sinθ+cosθ)^2=1/4
→1+2sinθcosθ=1/4
→sinθcosθ=-3/8
という主張をすればOKで、「←」は不要です。
この回答への補足
回答ありがとうございます。NO2さんの補足でも書きましたが、『~の式のとき~の式の値を求めよ』
の問題は同値性不必要。
それ以外は同値性必要と思って問題を解けばいいのでしょうか。その辺の判断がどうもあいまいなので
そうした点を教えていた炊ければありがたいです。
No.2
- 回答日時:
問題が、「sinθ+cosθ=1/2のときsinθconθの値は?」ならば、
sinθ+cosθ=1/2⇒A⇔sinθconθ=***
という設定になっています。仰る通り同値性はなりたっていません。
しかしこの問題は同値性を必要としない(ことになっている)問題です。
なぜなら問題そのものが「のとき」といっていますよね。PのときQがなりたつ、というのは同値である、ということの表現ではなく、まさにP⇒Qということを表している表現ですから。
この問題では不必要と思いますが、同値性を要求される問題でしたら、#1さんの書き方でも良いし、逆にsinθcosθ=-3/8から考えると、
sinθcosθ=-3/8⇔(sinθ+cosθ)^2=1/4⇔sinθ+cosθ=±1/2
です。このことからもこの問題は必要条件を求めているのが解ると思います。
こういうのは慣用というか問題の種類によるので、場合によっては必要十分条件を求めねばならないこともあります。しかしこの問題の場合逆の成立を要求していません。それが「のとき」という表現なのでしょう。
この回答への補足
早速の解答ありがとうございます。私がこの質問で一番聞きたいのは同値性はどのようなときに考えなければ
ならないのか?という点です。三角関数の問題を例としたのは単なる一例としてです。式の値を求める問題は
中学1年のすぐの段階であると思いますし、また高校数学でも等式、指数など色々な単元であると思いますが、
結局『~の式のとき~の式の値を求めよ』の式の値を求める問題は同値性を考える必要はなく、P⇒Qの変形
で解を求め、それ以外の問題(方程式、不等式、最大、最小、軌跡など)などの問題では式変形で同値性を
考えなければいけないのでしょうか?
・・・の問題・・・同値変形必要
・・・の問題・・・同値変形不必要
といった判断基準みたいなものがあるのでしょうか
長い文章ですみません。
No.1
- 回答日時:
sinθ+cosθ=1/2かつsin^2θ+cos^2θ=1
←→ (sinθ+cosθ)^2=(1/2)^2かつsinθ+cosθ=1/2かつsin^2θ+cos^2θ=1
←→ sinθcosθ=-3/8かつsinθ+cosθ=1/2かつsin^2θ+cos^2θ=1
というふうに、元の条件式「sinθ+cosθ=1/2」を残しておかないと、同値変形になりません。気軽に消去するクセをつけてしまうと、テストでの点数まで消去することになります。こわいですね。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開に関して 以外の「」の解答を頂き 13 2022/11/11 09:45
- 数学 連立方程式についての疑問 7 2022/06/19 19:48
- 数学 連立方程式 6 2022/06/19 15:03
- 高校 変数の置き換えと範囲の確認につきまして 1 2022/05/21 14:31
- 数学 高校生です。 この問題が解説がないため合ってるか分かりません。 この回答であってますか? 回答 g( 3 2023/01/24 14:05
- 数学 高校生です。 この問題の解説がなくてこの解き方で合っているでしょうか? g(x,y)=0のとき x^ 2 2023/01/25 17:28
- 数学 三角関数教えてください! 3 2022/05/06 19:46
- 数学 sinA+sinBは、A=(α+β),B=(α-β)と置き換えて sin(α+β)=sinαcosβ 2 2022/08/23 08:06
- 物理学 「次式で与えられる1次元の波動関数ψ(x,t)が自由電子のシュレディンガー方程式を満たすことを確かめ 2 2023/03/08 12:33
- 高校 対数方程式につきまして 4 2022/05/05 07:55
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
sin2xの微分について
-
三角関数の合成の問題です。 上...
-
数学 2次曲線(楕円)の傾きの計...
-
この問題の半径rと中心核αの扇...
-
アークサインの微分
-
三角関数
-
sin(ωt+θ) のラプラス変換
-
3辺の比率が3:4:5である直...
-
三角比の拡張
-
どこまで覚えておくべき?
-
0°≦θ≦180°のとき、次の方程式、...
-
三角関数の加法定理について
-
【数II/三角関数】 Q.次の値を...
-
解説お願いします。 数研出版 ...
-
教えて下さい。
-
教えてください!!
-
画像のように、マイナスをsinの...
-
e^iθの大きさ
-
高校の数学の三角関数の問題を...
-
次の三角比を45°以下の角の三角...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
sin2xの微分について
-
tanθ=2分の1のときの sinθとcos...
-
高1 数学 sin cos tan の場所っ...
-
θが鈍角のとき、sinθ=4分の3の...
-
次の三角比を45°以下の角の三角...
-
e^iθの大きさ
-
教えてください!!
-
3辺の比率が3:4:5である直...
-
二つの円の重なっている部分の面積
-
画像のように、マイナスをsinの...
-
急いでます! θが鈍角で、sinθ...
-
sinθ+cosθ=1/3のとき、次の式の...
-
力学・くさび
-
sinφ(ファイ)の求め方を教えて...
-
楕円の単位法線ベクトルがわか...
-
sinθ-√3cosθをrsin(θ+α)の形...
-
三角形の二辺と面積から、残り...
-
式の導出過程を
-
三角関数 sin cos tanの表につ...
-
数学 2次曲線(楕円)の傾きの計...
おすすめ情報