(1)zを複素数としてu=(1-z^16)÷iz^8と置く。|z|=1ならば、uは実数であることを証明せよ。

(2)等式z^6=1を満たすzの中で、uが最大となるようなzを求めよ。

という問題です。
(2)の答が、z=(‐1/2)+(√3i/2)、(1/2)-(√3i/2)になることは分かっているのですが、(1)については解き方と回答、(2)は解き方が分かりません。
よろしくお願いします。

A 回答 (3件)

すいません先の解答、ところどころミスがありましたね。


ちょっと訂正させてください。

(1)まずuを変形してu=(1-z^16)÷iz^8=1/iz^8-iz^8=i(z^8-1/z^8)
つまりu=i(z^8-1/z^8)と変形できます。
ここで、|z|=1ならばz=1/(zの共役)(簡単に示せるので証明略)
を使うとu=i(z^8-(zの共役)^8)=i(z^8-(zの共役)^8)と書ける。

uが実数⇔u=(uの共役)が成立する。(簡単に示せるので証略)
だからu=(uの共役)を示せば上の同値性からuが実数であることがいえる。
そこでuの共役を計算する。
(uの共役)=-i((zの共役)^8-z^8)=i(z^8-(zの共役)^8)=u
よってuは実数であることが示された。

(2)z^6=1だからu=i(z^8-(zの共役)^8)=i(z^2-(zの共役)^2)
=i(z+(zの共役))(z-(zの共役))
となる。
z^6=1となるzは6つしかない(複素平面上で単位円を6等分した点)ので
これをすべて代入して最大となるものを求めても苦にはならないでしょう。
ただ上の式はzとzの共役を入れ替えても符号が変わるだけなので
実質4つを調べればいいことになります。
(ちなみにz^6=1を満たすzはz=cos(πn/3)+i*sin(πn/3),n=0,1,2,3,4,5
と書けることが知られています、揚げられている答の2つはn=2,5の時です)

またミスしていたらすいません。
    • good
    • 0

(1)まずuを変形してu=(1-z^16)÷iz^8=1/iz^8-iz^8=i(z^8-1/z^8)


つまりu=i(z^8-1/z^8)と変形できます。
ここで、|z|=1ならばz=1/(zの共役)(簡単に示せるので略)
を使うとu=i(z^8-1/(zの共役)^8)=i(z^8-(zの共役)^8)と書ける。

uが実数⇔u=(uの共役)だからu=(uの共役)を示せばいい。そこでuの共役を計算する。
(uの共役)=-i((zの共役)^8-z^8)=i(z^8-(zの共役)^8)=u
よってuは実数が示された。

(2)z^6=1だからu=i(z^8-(zの共役)^8)=i(z^2-(zの共役)^2)
=i(z+(zの共役))(z-(zの共役))=(z+(zの共役))(z-(zの共役))
となる。
z^6=1となるzは6つしかない(複素平面上で単位円を6等分した点)ので
これをすべて代入して最大となるものを求めても苦にはならないでしょう。
ただ上の式はzとzの共役を入れ替えても値は変わらないので
実質3つを調べればいいことになります。
あまり詳しく書きませんでしたが、細かいところは自分で考えたほうが
力になるでしょう。
    • good
    • 0

(1) |z|=1 であることから、z = e^(iθ) とおけますね。


  もし、kyoko_w さんが高校生ならば z = cosθ + i*sinθ と置いてください。

(2) (1)が出来れば z^6=1 を満たす z がわかっておられるようなので、
  少し考えれば解けるのではないかと思います。
  ただし、z^6=1 を満たす z は2つだけではありませんが…
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qu=g(r)/r r=(x^2+y^2+z^2)^(1/2)のとき、uxx+uyy+uzz

u=g(r)/r r=(x^2+y^2+z^2)^(1/2)のとき、uxx+uyy+uzzをrの関数で表させる問題なんですが、まずux=∂g/∂r(1/r)-g(1/r^2)であってますか?ここから先どうすればいいのか分かりません。Uxxがでれば対象性から求められそうなきがしますが。gはC^(2)級とあったのですがこれはどういう意味ですか?

Aベストアンサー

#2のKENZOUです。
>uxx=(∂ur/∂r)rx・rx+ur・(∂rx/∂x)
右はいいのですが、(∂ur/∂r)rx・rxとなる理由が分かりません。

ux=(∂u/∂r)(∂r/∂x)=ur・rx
uxx=(∂ur/∂r)(∂r/∂x)・rx+・・
  =(∂ur/∂r)rx・rx+・・

Qcosx = 1/√2 - (1/√2)・(x-π/4) - (1/2√2)・(x-π/4)^2 +

cosx = 1/√2 - (1/√2)・(x-π/4) - (1/2√2)・(x-π/4)^2 + {(x-π/4)^3/3!}・sin(θx)  
(0<θ<1)

f(x) = (4/π^2)・{2(x-π/4)(x-π/2)-√2・x(x-π/2)}
このグラフが分かりません…
教えてください!

Aベストアンサー

+ {(x-π/4)^3/3!}・sin(θx) は
+ {(x-π/4)^3/3!}・cos(θ(x-π/4)) ではないかと...違うかな?

で、これは cosx そのものです。θは x の関数なのでそれに惑わされないように。


下のはそれでなく、f(x)=(8/π^2){ (x-π/4)(x-π/2) - √2 x(x-π/2) } が正しいと思います・・・
このグラフは添付した図になります。
かなり近いです。

描き方は、計算機を用意して頂点を数値計算、あとは (0, 1) 、(π/4, 1/√2) 、(π/2, 0) を通るように二次関数のグラフを描けば良いです。
あるいはグラフ描画ソフトの力を借ります。

Qある積分の問題。∫1/√(x^2+A) = log|x+√(x^2+A)|

ある演習問題で
∫1/√(x^2+A)
という形が出てきて、それが解けずに解答を見たら、
∫1/√(x^2+A) = log|x+√(x^2+A)|
という記述で、この積分の問題は済まされていました。逆算すると、確かにそうなるのですが、なかなかこの形を直接考え出すのは、難しい気がします。…ので、単純な暗記になると思うのですが、覚えにくい形ですよね…。
何か右辺を導き出すような考えの手順のようなものはあるでしょうか?

よろしくお願いします。

Aベストアンサー

高校範囲だと、#1の方のように、
t = x+√(x^2+A)
という置換を覚えるものです。

∫1/(1+x^2)dx という形をみたら、x=tan(t) と置く、ていうのと同じ感じで、
∫1/√(1+x^2)dx という形をみたら、t=x+√(1+x^2) と置くものなんです。
この積分は、けっこうよく出てくるので、覚えておいて損はないです。

大学生であれば、#2の方のように、x=sinh(t) と置換するってのが常道でしょうけど。

Q(x^2)'=2x, (x^1)'=1, (1)'=0, (x^-1)'=-x^-2 そして ∫x^-1 dx = ln|x| + C

(x^2)' = 2x^1 ⇔ ∫2x dx = x^2 + C
(x^1)' = 1 ⇔ ∫1 dx = x + C
※ ln(x)' = x^-1 ⇔ ∫x^-1 dx = ln|x| + C
(x^-1)' = -x^-2 ⇔ ∫-x^-2 dx = x^-1 + C
(x^-2)' = -2x^-3 ⇔ ∫-2x^-3 dx = x^-2 + C
ですが、

なぜ、※のところだけイレギュラーにになるのでしょう?

はるか昔、高校のときに導出方法は習いましたが、
イメージとしては、どう捉えればよいでしょう?

証明等は無くても構いませんので、
直感に訴える説明、あるいは、逆に高度な数学での説明などができる方いらっしゃいましたら、お願いします。

(もしかしたら、高度な数学では、イレギュラーに見えなくなったりしますか?)

Aベストアンサー

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = ln|x| + C …(2)
のかわりに、
∫0dx = ∫0x^{-1}dx = 0 + C' = x^0 + C
があると思えば、イレギュラーではなくなります。
(2)は、
∫nx^{n-1}dx=x^n+C …(3)
のリストに元々登場していないと解釈するわけです。

また、(3)の両辺をnで割って、
∫x^{n-1}dx = (1/n)x^n + C …(4)
のリストとして考えると、右辺のほうに1/nがあるので、そのリストからは最初からn=0は除外して考えなければなりません。

たまたま、∫x^{-1}dx = ln|x| + C となるので、はまりそうに見えますが、もともと除外していたところに、後から違う種類のものを持ってきてはめ込んだだけと解釈すれば、そこがイレギュラーになるのは不思議ともいえなくなってきます。

また、(4)のリストの立場で考えると、(分母にnがあるので)n=0を除外しなければならないけど、一方、積分∫x^{-1}dxというものは厳然として存在しているので、その隙間に、べき関数とは全く違う関数 ln|x|+C が入ってきているという言い方もできます。これは、べき関数だけでは一覧表が完成しないところに、logでもって完成させているということにもなります。つまりlogという関数は、べき関数のリストの「隙間」に入ってきて、「完成させる」というイメージです。

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = l...続きを読む

Q{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

n → ∞のとき、
{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

また、n → ∞のとき、
{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 → π√2/8

らしいのですが、証明がかいてありませんでした。
どうか証明を教えていただけないでしょうか。

Aベストアンサー

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関数 f(x)=√{(1-x^2)/2}
上限関数 g(x,Δ)=√[{(1+Δ)^2-x^2}/2] (但しΔ=1/n)
階段関数 {√{(k+1)+(k+2)+…+n}}/n=√[{n(n+1)-k(k+1)}/(2n^2)]

(1)x=k/nのところで、階段の高い方より上限関数 g(x,Δ)が大きい事を示します。但しk=1~nです。
x=k/nの階段の高い方は√[{n(n+1)-(k-1)k}/(2n^2)]です。
x=k/nの上限関数 g(x,Δ)=g(k/n,1/n)=√[{(1+(1/n))^2-(k/n)^2}/2]=√[{(n+1)^2-k^2}/(2n^2)]
(上限関数) ≧ (階段関数の高い方) を示すには、ルートと分母の(2n^2)が共通なので、
(n+1)^2-k^2 ≧ n(n+1)-(k-1)k を示せば十分です。
{(n+1)^2-k^2}-{n(n+1)-(k-1)k}=n-k+1≧0 より明らかです。

(2)x=k/nのところで、階段の低い方より下限関数 f(x)が小さい事を示します。但しk=0~nです。
x=k/nの階段の低い方は√[{n(n+1)-k(k+1)}/(2n^2)]です。
x=k/nの下限関数 f(x)=f(k/n)=√[{(1-(k/n)^2}/2]=√[(n^2-k^2)/(2n^2)]
(階段関数の低い方) ≧ (下限関数) を示すには、ルートと分母の(2n^2)が共通なので、
n(n+1)-k(k+1) ≧ n^2-k^2 を示せば十分です。
{n(n+1)-k(k+1)}-(n^2-k^2)=n-k≧0 より明らかです。

以上の事から階段関数は下限関数 f(x)と上限関数 g(x,Δ)の間に入る事がわかりました。
下限関数の面積をF,上限関数の面積をG(n),階段関数の面積をA(n)とすると、
F ≦ A(n) ≦ G(n) となります。
F=∫[0→1]f(x)dx=(1/√2)(単位円の面積÷4)=π(√2)/8
G(n)=∫[0→(1+Δ)]g(x,Δ)dx=(1/√2)(半径(1+Δ)の円の面積÷4)={π(√2)(1+Δ)^2}/8 (但し Δ=1/n)
つまり階段関数の面積はπ(√2)/8以上{π(√2)(1+1/n)^2}/8以下になります。
n→∞で階段関数の面積はπ(√2)/8に収束します。

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関...続きを読む


このカテゴリの人気Q&Aランキング

おすすめ情報