親子におすすめの新型プラネタリウムとは?

ちょっと専門的な話になるのですが、リン原子は空の3d軌道を使って、超原子価分子を生成することができますよね?
リン原子は最大いくつまで結合することができるのでしょうか?tetrabutylphosphonium halide等はよく知られていますが、そのリン原子に更なる結合も可能だと。
電子配置、混成軌道等の面からご教授ください!

このQ&Aに関連する最新のQ&A

A 回答 (6件)

Bu4POH + nAcOH -> ?


と言う反応に関してですが、私もこの反応については良く知りません。
しかし、酢酸イオンの求核性の低さ、立体障害、ブチル基の電子求引性の低さ、キレート型配位子が一つも無いことなどから、この反応の生成物はホスホランではなくて、単なるイオン性化合物だと思いますが?
また、過剰の酢酸を存在させても、6はいい以上への配位数増加は見られないと思います。結局溶液中に見えるのはBu4P^+イオンだと思いますが。フッ化物イオンくらい強いルイス塩基を使えば、配位が見えるかもしれません。

私も本をチェックしましたが、確かに7配位化合物の存在が示唆されています。
また、ケイ素などでは7配位化合物が知られています。
これらにおいても、多中心型の結合を考えることで結合は説明できます。
ただし、錯体の構造によって考えるべき多中心結合は変わることがありますので、ご注意下さい。
5はいいの場合でも、trigonal bypiramidalとsquare pyramidalでは違います。

三中心結合で考えるのも良いですが、もっと簡単にドナー・アクセプター型の結合形成で説明することも多いです。
要するに、X-E-Lという三中心型の結合が、X-Eの背面にLが配位してきて生成したのだ、という考え方で、この場合はX-Eのシグマスター結合にLが電子供与した、として結合形成を考えます。

本に載っているアミノ基やアルコキシ基などの中性配位子が配位した化合物の場合も、同様に考えます。
Si-R, P-R, C-R, S-Rなどのシグマスター軌道にアミノ基が電子供与したドナー・アクセプター相互作用として説明することが多いです。
    • good
    • 0
この回答へのお礼

早速のご返答ありがとうございます。

Bu4POH + 2AcOH → Bu4POAc + AcOH と、過剰な酢酸はリン原子には配位せず、酢酸として系内に残されたままってことでしょうか?

(1)Bu4POH + AcOH →
(2)Bu4POH + 2AcOH →
(3)Bu4POH + nAcOH → (N>2)
(1),(2),(3)の反応生成物が、それぞれ違うCA RNで登録されてるので、何らかの形で錯体形成されてるのかと思って、質問した次第です。

お礼日時:2006/10/30 18:22

というか、そもそもBu4NOAcと言う化学種自体、ホスホランではないと思うのですが?


ホスホニウムアセテートと言うべきものではないでしょうか。
31P NMRのデータやX線構造解析がのっていれば、即座に判明することではありますが。

記載されている反応については、何ができたか?と言うコメントは無いのですか?
    • good
    • 1
この回答へのお礼

ええ、知りたい化合物は、ホスホランではありませんでした。勘違いしてました;もーちょっと別の観点から調べてみることにします!

ありがとうございましたm(__)m

お礼日時:2006/10/31 00:24

#1です。

ああまだ開いていて良かった。
#2、3様有難うございます。
愚かな答えを書いてしまいました。
わざわざ恥をかきに帰ってきたのは、同じ結合様式の硫黄の三配位8電子結合で学位論文を書いたのに全く忘れていたのを告白したかったからです。
勉強を怠ると恐いですね。
有難うございました。
m(_ _)mm(_ _)m
    • good
    • 0

追記します。


超原子価化合物の分子軌道の説明で、良く出てくる考え方が3中心4電子結合というものです。
No.2でジボランのことを書きました。
ジボランの場合、1つのH原子と2つのB原子の提供する三つの軌道(H1s 1個、B sp3 2個)から、一つの結合性軌道、一つの非結合性軌道、一つの反結合性軌道が形成され、二つの電子が結合性軌道を占めることで結合ができます(三中心2電子結合)。

三中心4電子結合はこれと似た考え方です。
PF5の場合をかんがえます。この分子はトライゴナルバイピラミダル(三方良錐構造)です。
Pの上下にフッ素原子1個ずつ(アピカル位という)、周囲にフッ素原子3個(エクアトリアル位という)となっています。

アピカル結合が三中心4電子結合です。
フッ素の2p軌道が2個、リンの3p軌道が1個提供されますから、全部で3個の分子軌道ができます。ここに、上下のフッ素原子から1個ずつ、中央のリン原子から2個の電子が収容されます。
すなわち、結合性2個、非結合性2個となるため、全体として結合が生じます。

PF6^-などの6配位化合物の場合は、全ての結合が3中心4電子結合から形成されている、として考えます。

もっとも、上記のような局在化軌道と分子軌道の合いの子のような理論はやや古典的で、すでに50年代にピメンテルらが提唱しています(ピメンテル化学結合という有名な教科書を読んでいるかもしれません)。
現在の理論計算では、このような局在化した結合ではなく、分子全体に広がった分子軌道をまず考えます。
    • good
    • 0
この回答へのお礼

アントラセンさん、ありがとうございます!
季刊化学総説 超原子価化合物は持っているのですが、その中では7配位化合物も紹介されていたような気がします。。
具体例として、
Bu4POH+AcOH→Bu4POAc+H2O
となると思いますが、AcOHが2倍,3倍モル,・・・と過剰量あれば、リン原子へのAcOHの結合はどのようになるかが知りたいのですm(__)m
私自身の専門は有機合成で、この分野は不勉強な点がたくさんあり、完全には理解できていません。。これを元に勉強していくつもりです。よろしければ、ご教授くださいm(__)m

お礼日時:2006/10/29 23:48

6配位化合物があります。


ヘキサフルオロホスフェートPF6^-
など。このアニオンは求核性が低く、BF^-やClO4^-などと同様に錯体の対アニオンとしてよく用いられます。
他にもさまざまな6配位化合物があります。
また、5配位化合物も別に珍しくはありません。
PCl5やPF5などは古くから知られた中性5配位化合物(ホスホラン)です。
Wittig反応で有名なWittigが、初めて炭素置換されたホスホランPPh5を合成しました。Wittigはホスホランの合成研究においてWittig反応を発見したそうです。

3d軌道で説明するのは、現在では誤った考え方です。
繊維金属錯体の結合で、配位子場理論というものを習っているかもしれません。
超原子価化合物の結合も、これと似た理論で説明されます。
配位子の軌道(p軌道やsp3混成軌道など)をいくつか組み合わせて形成される配位子場と、リンの3p,3s軌道が相互作用することで、結合が説明されます。
たとえば、ジボランの結合に考え方は似ています。
2中心2電子の古典的な共有結合の考え方だと、うまく結合が説明できませんが、いくつかの原子に非局在化した軌道を考えれば、d軌道を考える必要はありません。

必要がないというか、理論計算などからd軌道は関与していないことは数十年前から示唆されてきていました。最近の理論計算の結果から、d軌道関与は否定されており、d軌道は含めません。

詳しくは
季刊化学総説 超原子価化合物

Wiley Organic hypervalent compounds
など参照ください。
    • good
    • 0

PF5が安定で温室効果ガスとして知られています。

配位はトリゴナルバイピラミダルです。
PF6^-もあったと思います。その場合オクタヘドラルですのでd軌道が使われているものと思います。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q硫酸や五塩化リンなどの(疑似)sp3d2、sp3d混成軌道について

こんばんは。
この前、化学結合論に関する本を読んでいたんですが
その本の中で「硫酸や五フッ化リンなどの三周期元素は3d軌道を使った
混成軌道を作ると思われがちだが、実際はエネルギーが高くほとんど結合には使われていない。」
と書いてありました。
確かに3d軌道とは少しエネルギー差が大きいと思うのですが、
それなら一体どうやって六本や五本の結合手を出せるのでしょうか?
どうか詳しい方、教えてください。
よろしくお願いします。

Aベストアンサー

>硫酸イオンの構造では二重結合が2本含まれています…
こっちの方は、問題無く二重結合では「ない」ですね。大学以上では絶対に二重結合だとは教えません。
ただ価数としては(HO)2S^2+(-O^-)2になるので6+で四配位六価と言えます。

リンの方ですが、確かにおっしゃるとおりですね。電子二個多いです。
でもなー、三中心結合に四電子を入れると結合と反結合の両方のMOに電子が入ってしまうので、ちょっと不満が残ります。
元の原子軌道が三つなので、MOも三つ出来、「結合」「非結合」「反結合」となるはずですね。
そこで「結合」と「非結合」に二つずつ電子を入れてやると収まるのですが、オクテット則からは外れますね。
今のところオクテット則から外れても三中心四電子結合だと考えるしかないようです。(恥;
いつもここの処が割り切れないんです、今回は忘れていました、済みません。

Qリン酸の電子構造についてです

リン酸(H3PO4)の電子構造についてです。
OH-がイオン結合しているのはわかるのですが、この=Oの結合がどのようにして成り立っているのかがよくわかりません。
超原子価の分子であるとはならったのですが・・・
どうか教えてください。よろしくお願いします。

Aベストアンサー

別に超原子価で考える必要はありません。

説明は二通りなされています。
分極した結合であるのは間違いないのですが、余剰の結合をイオン結合と考えるか、電荷移動相互作用に起因すると考えるか、ということです。

まずイオン結合から。

リンのローンペアが酸素原子に配位結合した、すなわちP^+-O^-という分極した結合を考えればよいですし、実際の電荷分布もそれを支持します。

どうもホスフィンオキシドやスルフィド、イリドなどのP=X (X = O, S, CR2)といった結合を二重結合といまだに考える人が多いですね。
結合長、電子分布の実測、理論計算などから、これは単結合+パイ結合といういわゆる二重結合とは違うことは前から分かっていることです。

結合が単結合に比べ短縮している、結合エネルギーが高い、といったことは、別に二重結合を意味しているのではなく、分極した原子間の静電引力によるもの、すなわちイオン結合の寄与があるためです。

次に電荷移動相互作用について。

P-OHのシグマ結合の反結合性軌道へ、オキソ配位子から電子が流れ込んでいる、という説明もなされます。
s*(P-OH) <- n(O)という電荷移動です。
有機化学で、超共役という概念を習っているでしょう。あれと同じことです。シグマ軌道が関与した電子の非局在化を、一般に超共役と呼びます。パイ軌道がなくても超共役はおきます。
これはイオン結合ではなく、結合の短縮は電荷移動に起因したものだ、とする理論です。

どちらが本当か?というと未だに研究がなされている段階です。
どっちで考えても間違いではないでしょうし、イオン結合と電荷移動の両方の寄与が働いているのが本当のところなのでしょう。

別に超原子価で考える必要はありません。

説明は二通りなされています。
分極した結合であるのは間違いないのですが、余剰の結合をイオン結合と考えるか、電荷移動相互作用に起因すると考えるか、ということです。

まずイオン結合から。

リンのローンペアが酸素原子に配位結合した、すなわちP^+-O^-という分極した結合を考えればよいですし、実際の電荷分布もそれを支持します。

どうもホスフィンオキシドやスルフィド、イリドなどのP=X (X = O, S, CR2)といった結合を二重結合といまだに考える人が...続きを読む

Q超原子価化合物の分子軌道

こんばんは。
今、三酸化硫黄や硫酸、過塩素酸などの超原子価化合物の分子軌道について調べています。
なぜd軌道を結合に使えないはずのs,pブロック元素がオクテット則をオーバーするのか
という理由が、分子軌道法で説明していただけないでしょうか。
また、できれば超原子価化合物の分子軌道について説明している本も教えていただけたら嬉しいです。
どうかよろしくお願いします。

Aベストアンサー

> 三酸化硫黄や硫酸、過塩素酸などの超原子価化合物

超原子価化合物の定義は、人によって違ったりするので厄介なのですけど、これらの分子は超原子価化合物には含めないことが多いです。「シュライバー・アトキンス無機化学」には

「たとえばSO4^2-の共鳴構造にはS原子価殻に12電子をもつものが含まれるけれども、S原子がオクテットの電子をもつようなルイス構造も一つ描けるので、SO4^2-は超原子価化合物ではない」(上巻56ページ)

とあります。この本によると、オクテット則を満たす構造式が一つでもあれば超原子価化合物とはいわない、とのことです。三酸化硫黄や硫酸、過塩素酸は、#1さんの回答にあるようにオクテット則を満たす構造式があるので、この定義によれば超原子価化合物ではないです。

ただし、IUPACの定義
http://dx.doi.org/10.1351/goldbook.HT07054
をみても、オクテット則を満たす構造式が一つでもあれば超原子価化合物とはいわない、と書いてあるわけではないので、これらの分子を超原子価化合物に含める人もいます。ウィキペディア日本語版と英語版では、超原子価化合物の例としてリン酸イオン (PO4^3-)を挙げています。
http://ja.wikipedia.org/wiki/%E8%B6%85%E5%8E%9F%E5%AD%90%E4%BE%A1
http://en.wikipedia.org/wiki/Hypervalent_molecule
また、ウィキペディア独語版の「硫酸イオンの構造」の説明文中に、硫酸イオンの結合と超原子価は分子軌道のエネルギー準位図から説明できる、という記述があります。

> なぜd軌道を結合に使えないはずのs,pブロック元素がオクテット則をオーバーするのか

価電子が非局在化するからです。

> 分子軌道法で説明していただけないでしょうか。

PCl5の結合は、分子軌道法を使うと、3中心4電子結合で説明できます。
http://www.frad.t.u-tokyo.ac.jp/~miyoshi/InCh2000/sect7.html

SF6の結合も、おおざっぱには3中心4電子結合で説明できます(S原子の3px,3py,3pz軌道を使う)。しかしこの考え方だと、3s軌道が空になって電子が入らない、ということになって、「エネルギー準位の低い分子軌道から電子を詰めていく」というルールに反してしまいます。そこで、真面目に分子軌道法でSF6を取り扱うときには、上のリンク先にあるように、結合性のa1g軌道に2電子、結合性のt1u軌道に6電子、非結合性のeg軌道に4電子が入っていると考えます。

SO4^2-は、あまり良い図ではないのですけど
http://de.wikipedia.org/wiki/Sulfate#Struktur_des_Sulfations
の図(クリックすると大きくなります)のように、シグマ結合が4つとパイ結合が3つあるので、S-Oの結合次数は (4+3)/4=1.75 になります。

H2SO4やHClO4の分子軌道は、SF6やSO4^2-のそれよりも複雑になります。学部レベルの教科書でこれらの分子の分子軌道が載っているものは、私は見たことがないです。

教科書に載っていそうなのは、SO2でしょうか。
http://commons.wikimedia.org/wiki/Category:Sulfur_dioxide_molecular_orbitals
リンク先の図では
 HOMO: 硫黄の非共有電子対
 HOMO-1:パイ結合
 HOMO-2:酸素の非共有電子対
 HOMO-3:パイ結合
 HOMO-4:酸素の非共有電子対
 HOMO-5:酸素の非共有電子対
 HOMO-6:酸素の非共有電子対
 HOMO-7:シグマ結合
 HOMO-8:シグマ結合
のように対応付けすることができます。
SO2のSO結合は、二重結合になることがわかります。

SO3は、SO2と似たようなエネルギー準位図になりますが、原子数が多い分だけ複雑になります。

> 超原子価化合物の分子軌道について説明している本

分子軌道法の良いところは、原子価結合法とは違って、オクテット則を破っている分子でも満たしている分子でも、まったく同じように取り扱うことができるところです。ですので、まず分子軌道法についてしっかり学ぶのがいいんじゃないかなと思います。教科書としては、
http://oshiete1.goo.ne.jp/qa4415255.html
の回答番号:No.5に挙げた本の[1]と[2]をお勧めします。
また、「オクテット則」、「混成軌道」、「共鳴構造」という概念は、分子軌道法とは相性の悪い概念なので、分子軌道法を本気で勉強するときには、この三つを頭から追い出しておいたほうがいいです。

超原子価化合物に関しては、図書館にこもって、「無機化学」という書名の教科書の該当箇所を手当たりしだいに読むのがいいです。大学の中には、高校生にも図書館を開放している大学もありますので、お近くの大学図書館に尋ねてみてください。一冊だけ挙げるなら、「シュライバー・アトキンス無機化学」の上巻です。

> 三酸化硫黄や硫酸、過塩素酸などの超原子価化合物

超原子価化合物の定義は、人によって違ったりするので厄介なのですけど、これらの分子は超原子価化合物には含めないことが多いです。「シュライバー・アトキンス無機化学」には

「たとえばSO4^2-の共鳴構造にはS原子価殻に12電子をもつものが含まれるけれども、S原子がオクテットの電子をもつようなルイス構造も一つ描けるので、SO4^2-は超原子価化合物ではない」(上巻56ページ)

とあります。この本によると、オクテット則を満たす構造式が一つでも...続きを読む

Qd軌道も含めた混成軌道

sp,sp2,sp3のBeCl2,BF3,SnCl2,CH4,NH3,H2Oなどはs軌道とp軌道しか混成に関与していませんが、他にd軌道をも含めた混成軌道はどんなものがあって、混成軌道の形はどうなっているのか、どなたか教えてください。

Aベストアンサー

d軌道を含めた混成としては、d2sp3混成軌道やdsp2混成軌道などが代表的なものだと思います。
前者は6配位の正8面体型構造であり、後者は4配位の平面状で、正方形の中心から頂点方向に延びる軌道です。


http://www.shse.u-hyogo.ac.jp/kumagai/eac/chem/lec14-2.html

Q原子価結合法と分子軌道法

原子価結合法と分子軌道法の違いが
いまいち分かりません。
数式ばかり並べられているのを見ても
どこがどう違うのかを言葉でうまく表現出来ません。
本なども読んでみたのですが、どれも難しすぎて、明確にどこがどう違うのかが分かりません。
どなたか分かりやすく、これらの違いを説明してくださいませんか?

Aベストアンサー

レスが付かないようなので、一言。
このサイトのココ↓
http://okwave.jp/kotaeru.php3?q=561839
に大変詳しく、分かりやすい解説が載っていますよ。一度ご参照してみてください。

参考URL:http://okwave.jp/kotaeru.php3?q=561839

Q分配関数(状態和)がわかりません。

統計力学とかで出てくる分配関数(状態和)がありますが、物理的な意味がよくわかってません。
Σexp(-β・ei)とありますがどういう意味なんでしょうか?

またある問題でエネルギー準位ε=(n+1/2)hνのN個の独立な調和振動系子の系があり
この調和振動子一個に対する状態和が
Z=1/{2sinh(hν/2kB・T)}
となることを示せという問題があるんですが問題の意味すらよくわかりません。
一個に対する状態和?という感じです。
どうかお願いします。

Aベストアンサー

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというように表すことが出来ますね。
このときの状態和は
 Z=ΣP(x)
  =P(1)+P(2)+…+P(6)
  =6*1/6
  =1
ということになります。

>速度やモーメントならしっくりきますが状態というのは一体何なんでしょうか?
さいころで言うと状態は「1の目が出ること」などに対応します。
この場合は6つの状態を取り得ますね。

>一個に対する状態和?
粒子が一個であっても e_n =(n+1/2)hν という結果を見れば、
基底状態 e_0 = hν/2 の状態にあるかもしれないし、
励起状態の1つ e_1 = (1+1/2)hν = 3/2*hν のエネルギー状態にあるかもしれない、
というようにとり得る状態は1つではないことがわかります。
あとは、先のさいころの例と同様に
e_0 の状態にある確率が exp(-βe_0)
e_1 の状態にある確率が exp(-βe_1)
   :
ですからこれらの確率の無限和をとるだけです。


この質問とは関係ないですが、
その後、相対論の理解は進みましたか?

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというよう...続きを読む

Qリンはなぜ5本の共有結合ができるのですか?(オクテット則に反している?))

大学一年生の授業で最外電子殻に8個の電子がはいっていると安定ということを習いました。しかし、リン酸のリンや硫酸の硫黄をみていると5個の共有結合があります。これはオクテット則に反するのと思うのですがどう説明するのでしょうか?どなたか教えて下さい。お願いします。

Aベストアンサー

疑問に思われる事ご尤もです。
各電子殻に入る事の出来る最大電子数はご存じと思います。
K:2個 L:8個 M:18個 N:32個 ・・・・2×n二乗個
まで入ることが出来ます、リンや硫黄は第三周期の原子ですから。最外電子殻のM殻に無理に詰め込めば18個まで入れることが可能です、ではなぜ「最外電子殻に8コの電子が入れば安定」と言うのか。
「電子軌道」という言葉はもう学ばれましたでしょうか。各々の電子殻は更に(エネルギーが)下から順にs軌道(最大入り数2個)、p軌道(最大入り数6個)、d軌道(最大入り数10個)・・・・に分かれています。K殻はs軌道だけ、L殻はs軌道とp軌道、M殻はs軌道とp軌道とd軌道・・・・を持っています。各電子殻のs軌道とp軌道だけで考えればオクテット則が成り立つのです。第三周期以降の原子は場合によっては(結合相手の電子殻との相互作用によっては)d軌道も使ったりしますから、価電子が9個以上になることも有るのです。

Q一重項酸素と三重項酸素の違いを簡単に教えてください

一重項酸素と三重項酸素の違いが知りたいです。
量子力学で習うスピンという物が重要とはわかっているのですが量子力学は習ってないのでスピンというものがわかりません。
一重項酸素の方が反応性が高いということでエネルギーが高いというのは知っているのですが、根本的な違いがわかりません。たとえばルイスの電子構造式で表したら同じなのでしょうか???
どなたか簡単に説明していただけませんか?
お願いします。

Aベストアンサー

基本的に「量子化学無し」で一重項と三重項を区別するのは「無理」です。
#2のお答えが最も適切だと思いますが、正しくは三重項酸素のルイス構造は、三重結合がある、
 ‥  ‥
・O:::O・
となり、オクテットからはずれています。
両方の酸素にある不対電子が「縮重軌道」に関する「フント則」により同方向に揃って「反結合軌道」に入っているため、1/2+1/2=1のスピンを持ち、三重項となります。また反結合軌道に二つの電子が入っているため三重結合の一結合分が「無効」化されます。
一重項の酸素一番下の構造はルイス構造で描くと、
 ‥  ‥
・O:::O(・)
になります。カッコ内の電子はさらに高い順位へ昇っています。その場合「縮重」が解けて「フント則」が適用されなくなり不対電子二つが逆平行になるため、1/2+(-1/2)=0、となり一重項になります。
と、このように量子化学を使わないと全然意味が分かりません。

Q標準自由エネルギー変化について教えてください。

お願いします。
基礎中の基礎です。しかし混乱してます
標準自由エネルギー変化ΔG゜と自由エネルギー変化ΔGの違いが分かりません。

まず標準自由エネルギー変化ですが
aA+bB⇔cC+dDと言う反応があると
ΔG゜=各物質の生成ΔGfの合計=[c×ΔGfC]+[d×ΔGfD]-[a×ΔGfA]-[b×ΔGfB]だと思うのですが・・・
質問1:ΔG゜<0ですと反応は右に進まないはず。でもなぜ?
質問2:ΔG゜とはそもそも何を表しているのですか?(僕自身の薄学では生成側にそれだけエネルギーが偏っている?)
質問3:ΔG゜=-AとするとAが大きいほど反応は進みやすのでしょうか?(これ本当に分かりません・・)

自由エネルギー変化ΔGについてです
ΔG=ΔG゜+RTlnK
aA+bB⇔cC+dDと言う反応ではモル分圧平衡定数とするとK=([P_C]^c・[P_D])^d÷([P_A]^a・[P_B]^b)
です。
質問4:そもそもΔGとは何を表現しているのですか?平衡だとΔG=0となる。これはどういうこと?
質問5:ΔG゜=-RTlnKですが、通常ΔGというとみんなこの方法で算出してしまいます。ここで標準自由エネルギー変化ΔG゜と自由エネルギー変化ΔGをごっちゃにするとエライ事になりそうですが・・・
質問6:ΔG=ΔG゜+RTln([P_C]^c・[P_D])^d÷([P_A]^a・[P_B]^b)でよく25℃、1atmの濃度や分圧を入れてΔGを出してますが、これはどう解釈したらよいのでしょうか?その濃度や分圧のときの自由エネルギーということ?でもそれなら25℃、1atmの生成ΔGfから算出したΔG゜とΔGが同じにならないとおかしくありませんか?
質問:そもそも上記の考え方にどこかおかしいから悩んでいるので、指摘していただけたら幸いです。

お願いします。
基礎中の基礎です。しかし混乱してます
標準自由エネルギー変化ΔG゜と自由エネルギー変化ΔGの違いが分かりません。

まず標準自由エネルギー変化ですが
aA+bB⇔cC+dDと言う反応があると
ΔG゜=各物質の生成ΔGfの合計=[c×ΔGfC]+[d×ΔGfD]-[a×ΔGfA]-[b×ΔGfB]だと思うのですが・・・
質問1:ΔG゜<0ですと反応は右に進まないはず。でもなぜ?
質問2:ΔG゜とはそもそも何を表しているのですか?(僕自身の薄学では生成側にそれだけエネルギーが偏っている?)
質問3:ΔG゜=-Aとすると...続きを読む

Aベストアンサー

>平衡になったときのモル分率やモル濃度を入れると、当然RTlnKは
>-ΔG゜と同じになるはずですよね?

ΔG=ΔG゜+RTlnKですよね。平衡状態ではΔG=0なので、
RTlnK=-ΔG゜ または -RTlnK=ΔG゜で間違いないと思います。

>一般的にΔG゜って各物質の生成ΔGfの合計から算出するじゃないですか?

違うと思います。
ΔG゜=ΣΔGf゜(生成物)- ΣΔGf゜(反応物) だと思います。

標準生成自由エネルギーと自由エネルギー変化を混同しては行けません。
自由エネルギーやエンタルピーの絶対値を調べるのは大変なので
変化量を指標に用いていることは同じですが、標準生成自由エネルギーは、すべての元素が標準状態にあるとき自由エネルギーを0として、それらの単体から生成される化合物を上記の式を使って計算した物です。

反応が自発的に進むためにはΔGがマイナスでなければなりません。
ΔGは自由エネルギー変化です。
標準生成自由エネルギーΔG゜とは違います。
-RTlnK=ΔG゜ という関係から ΔG゜が負の時はKが1よりも大きい事を意味し、正の時には、その反応が進まないということではなくKが1よりも小さいことだけを意味します。
ΔG゜が大きな正の値をとるとKは著しく小さくなり、平衡点は原系の方に極端に片寄ることを意味しています。
ΔG゜=0ならばK=1ということです。

>平衡になったときのモル分率やモル濃度を入れると、当然RTlnKは
>-ΔG゜と同じになるはずですよね?

ΔG=ΔG゜+RTlnKですよね。平衡状態ではΔG=0なので、
RTlnK=-ΔG゜ または -RTlnK=ΔG゜で間違いないと思います。

>一般的にΔG゜って各物質の生成ΔGfの合計から算出するじゃないですか?

違うと思います。
ΔG゜=ΣΔGf゜(生成物)- ΣΔGf゜(反応物) だと思います。

標準生成自由エネルギーと自由エネルギー変化を混同しては行けません。
自由エネルギーやエンタルピーの絶対値を調べる...続きを読む

Qsp3d混成軌道について

こんばんは。

[SiF6]2- のSiの軌道はsp3d混成軌道になるらしいのですが
Fを6つ結合できるようにするために
3s、3p×3、4s×1、3d×1を使うのかと思って
s2p3d軌道??とよくわからなくなってしまいました。

どの軌道を混成するのですか?

Aベストアンサー

d2sp3ではないですか?


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング