【先着1,000名様!】1,000円分をプレゼント!

今、学校でコンデンサについて学んでいるんですが、同軸円筒コンデンサについてよく分からないので、質問させていただきます。

内半径a、外半径b、長さl(>>a,b)の同軸円筒コンデンサがあり、両電極間は中心軸を含む平面で2等分されていて、それぞれ誘電率ε1、ε2の誘電体で満たされています。外側電極は接地、内側導体に電荷Qを与えるとき、このコンデンサの静電容量を求めるにはどうしたら良いんでしょうか??

このQ&Aに関連する最新のQ&A

A 回答 (2件)

途中で電位を仮定するほうが計算しやすいかと


1.同軸構造(とガウスの法則から)電界強度∝1/r
2.中心導体の電位を仮定すると、同軸内の電界強度が決まり、ガウスの法則から中心導体の電荷Q'(=Q)を計算できる
3.Q'とVから静電容量を計算
という手順になるかと思います。
    • good
    • 0

ガウスの法則より電極間の電界を求めます。

それを積分することにより電位差Vを求めることができ、静電容量が求まります。

電磁気学では最も基本的な問題であり本を読めば例題などがあると思います。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q円筒コンデンサ(電磁気学)

分からない問題が出てきたのでまた質問させていただきます。

半径a、bで長さLの同軸円筒コンデンサにおいて内円筒に+Q、外円筒に-Qを与えた場合について(外円筒は接地)
1、電界を求め、両円筒間の電位差Vを求めよ。
2、Qが一定の時外円筒の半径をb~cに変化させる場合になされる仕事を計算せよ
3、電位φが一定の時b~cに変化させる場合になされる仕事を計算せよ

1、半径rの円柱をとってガウスの法則を適用
a<r<bの時Q(r)=Q
よってE(r)=Q/(2πεrL)
ここから積分によってVを求めたいのですが”外円筒を接地(→φ(b)=0)”という条件をどう用いればいいかが分かりません。

2、3に関してはまずコンデンサの静電容量Cを求めて静電エネルギーの変化に着目すると思うのですがどうやればいいのかがよく分かりません。

よろしくおねがいします。

Aベストアンサー

(1)aは内円筒の外半径?bは外円筒の内半径?
(2)長さLが有限のため、正確に求めるのは大変ですね。
半径a,bに比べて、Lは十分に長いと仮定してよい問題ですか。
よければ、あなたのやり方でOKです。
(3)接地とは、電位の基準点とするということです。
 ようするに外円筒の電位を0とするだけです。
 -dV/dr=E から V=-∫(a~r)Edr+Const
 定数ConstをVb=0となるように定めればよい。
(4)静電容量は、与えた電荷をQ、電極間の電位差をVとして、
  C=Q/Vで求めます。
(5)変化させる前のコンデンサの蓄積されるエネルギーは
 求められますね。
 

Q同心球殻状の導体から作られるコンデンサー 電場 電位差 電気容量

半径aと半径b(a<b)の同心球殻状の導体から作られるコンデンサーを考える。
外側球殻が電荷Qを帯び、内側球殻が電荷-Qを帯びているとし、以下の問いに答えよ。
(1)外側球殻と内側球殻にはさまれた領域の電場を求めよ。
(2)外側球殻と内側球殻の電位差Vを求めよ。
(3)このコンデンサーの電気容量を求めよ。

という問題が解けません。
特に、同心球殻状の導体から作られるコンデンサーの考え方がわかりません。
どなたか解いていただけませんか。
よろしくお願いします。

Aベストアンサー

基本的な考え方だけ説明します。
「球面上に一様に分布した電荷qは、球内に電場を作らず、球外では
動径方向を向く電場E(r)=q/(4πεr^2)をつくる」(ε:真空の誘電率)

内球に電荷q1が分布するとき、
0<r<aでE1(r)=0,a<rでE1(r)=(1/4πε)(q1/r^2)
外球に電荷q2が分布するとき、
0<r<bでE2(r)=0、b<rでE2(r)=(1/4πε)(q2/r^2)
実際の電場は、E(r)=E1(r)+E2(r)

電荷は、内球の外面にq1,外球の内面に-q1,外球の外面にq2分布する。

電位は、
φb=∫[0→∞] E(r)dr=(1/4πε)(q1+q2)/b
φa=φb+∫[a→b] E(r)dr=φb+(q1/4πε)(1/a-1/b)

q1=-Q,q2=+Qより、電位差は、
V=φa-φb=(Q/4πε)(1/a-1/b)だから、
C=Q/V=(Q/4πε)/(1/a-1/b)

Q電磁気の問題(円筒形のコンデンサ)

図のような断面をもつ内径a外形b長さLの円筒形コンデンサがある。

いま電極の単位長さあたりλの電荷を与えたものとし、次の問いに答えなさい

(1)電極間(a<b<c)の電場の大きさEを求めよ
(2)電極間の電位差Vを求めよ
(3)このコンデンサーの静電容量を求めよ

E=λ/2πεr
V=λ/2πε*log(b/a)

となったのですが静電容量がわかりません

どなたか教えてください!

Aベストアンサー

電荷量Q,そのときの電荷量Vがわかれば
C=Q/V
からCが得られます。

単位長さ当たりλの電荷を与えたときの電位差Vがわかったのですから電荷Qを求めればよいのです。
コンデンサの長さLであることからこれはすぐにわかるでしょう。

Q誘電体のある同心円筒導体について

以下の問題に関する質問をさせてください。

図のような単心ケーブルがある。誘電率ε1、ε2なる二種の絶縁物を有しε1=2ε2である。
絶縁物の耐えうる最大電界の強さはともにEmであるとすれば、cが与えられたとき、このケーブルの耐えうる最大電位差はいくらになるか。

まず、結果から言うと、答えは2^(1/2)*c*Em/eらしいのです。


しかしながら、私がした計算では、
円筒の単位長あたりの電荷をQとおいて、
E1=Q/2πε1 r  E2=Q/2πε2 r
=Q/4πε2 r

ケーブルにかかる電圧Vは
V=∫[a,b]E1dr + ∫[b,c]E2dr
 =(Q/4πε2 )* (logb/a + 2logc/b)

ここまで出たのはいいのですが、
E1またはE2がEmになるとき
E1かつE2がEmになるとき
のどちらの場合で計算していっても解答通りの答えが導けませんでした。

なぜ、最初にあげた通りの答えが導けるのか分かる方がいらしたら是非ご教授お願いしたいです。

Aベストアンサー

a,bを0<a<b<cの範囲で動かした時の最大値を求めてますか?
求めているのなら計算ミスじゃないかと。

Q誘電体に働く力がわかりません

「面積S、横幅Lの導体平板が2枚、間隔dを空けて存在する並行平板コンデンサがある。このコンデンサに電圧Vを印加しながら、コンデンサの右端からxのところまで、誘電率εの誘電体で満たした。真空中の誘電率をε0として、誘電体に働く力Fの方向を求めよ。」
という問題がわかりません。

コンデンサに電荷Qを充電して、電源を外し、誘電体を入れる場合には、コンデンサの静電エネルギーW=(Q^2)/2Cであることから
  F = -∂W/∂x > 0
よって誘電体に働く力の向きはxの増加する方向(コンデンサに引き込まれる方向)だと思いました。

ですが、電圧Vを印加したままの状態だと、コンデンサの静電エネルギーW=C(V^2)/2なので
  W = {εSx/(d×L)+ε0S(L-x)/(d×L)}(V^2)/2
  F = -∂W/∂x
= SV^2/(2d×L)(ε0-ε)<0
よって誘電体に働く力の向きはxの減少する方向(コンデンサから追いやられる向き)だと思いました。
これであっているのでしょうか?

Aベストアンサー

考え方が間違っている。

コンデンサの静電エネルギーの変化と誘電体の運動エネルギーの和は保存しません。
保存量でないためF=-∂W/∂xとはできません。

電源がつながっている状態では電源自体が仕事をするのでその影響を考えないといけないのです。
電源がした仕事=コンデンサの静電エネルギーの増加+誘電体の運動エネルギーの増加
になります。
誘電体が中に入った時、コンデンサの静電エネルギーは増大しますが電源の行った仕事はそれ以上に大きいため誘電体の運動エネルギーは増大します。
(電荷量の増加⊿Qとすると電源の行った仕事はV⊿Qとなります。コンデンサの静電エネルギーの増大は(1/2)V⊿Qですので誘電体に(1/2)V⊿Qの仕事がなされるのです。)

Q円筒コンデンサの電界の求め方について。

円筒コンデンサの電界の求め方について、分からないことがあります。問題は以下のようなものです。(直近で同じ問題を投稿された方がいらっしゃいましたが、電界に関する質問ですのでご容赦ください。)

問題:長さ1mについて500pFの静電容量を有する同心円筒コンデンサ(同軸円筒コンデンサ)で10kVの電位差を加えたときに電界の大きさが3kV/mmを超えないようにしたい。円筒の大きさを求めよ。(間は真空です。)

学校の説明では、

ガウスの法則を使い、E=Q/2πRε。この式に、Q=CV=5OO*10^-12*10*10^3を代入し、さらに、E=3*10^6も代入しRを求めます。

ここで、質問なのですが、なぜこの式を解くと、内半径が求まるのでしょうか?私は、これと同じとき方をしたのですが、外半径(中心から外側の円筒までの距離)を求めるものだと思っていて間違いました。

「電界の大きさが3kV/mm」とありますが、これはどこの電界の強さを指しているのでしょうか?電界の大きさは、内側(内円筒の表面)と外側(外円筒の表面)では、面積も違うし(電荷の密度が違う)、中心からの距離も違うので電界の大きさは違うとおもうのですが・・・。なぜ、内側と判断できて、上記のように解けるのでしょうか?

お力を貸してください。よろしくお願いします。

円筒コンデンサの電界の求め方について、分からないことがあります。問題は以下のようなものです。(直近で同じ問題を投稿された方がいらっしゃいましたが、電界に関する質問ですのでご容赦ください。)

問題:長さ1mについて500pFの静電容量を有する同心円筒コンデンサ(同軸円筒コンデンサ)で10kVの電位差を加えたときに電界の大きさが3kV/mmを超えないようにしたい。円筒の大きさを求めよ。(間は真空です。)

学校の説明では、

ガウスの法則を使い、E=Q/2πRε。この式に、Q=CV=5OO*1...続きを読む

Aベストアンサー

「電界の大きさが3kV/mm」
「3kV/mmを超えないようにしたい」にですから、電界がもっとも強いところで3kV/mmになる条件を見つけることになります。
同軸円筒上の電極間では、ガウスの法則から、電界の強さはrに反比例ですので、rがもっとも小さいところである内筒表面で最も電界の強さが大きくなります。

Q同心球導体球の接地について

同心球導体球の接地について、過去に質問されていなかったのでおねがいします。
同心球導体球において、外側の球に電荷Qを与え、内側の球を接地した場合、電界はどのようになるのでしょうか?
(内側の球の半径a、外側の球の内径b、外径cです。)
回答は、
a<r<b、c<rの場合についてお願いします。

Aベストアンサー

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷) + Q - Q'(外側の球の表面電荷) = Q - Q'
  半径 r の球面上の電界を E1(r) とすれば、Gaussの定理より、4*π*r*E1(r) =( Q - Q')/ε → E1(r) = ( Q - Q' )/( 4*π*ε*r^2 ) ---[1]
  半径 r の球面上の電位を V1(r) とすれば、V1(r) = ∫[r~∞] E1(r) dr = ( Q - Q' )/( 4*π*ε*r )
  外側の球の表面電位は V1 = V1(c) = ( Q - Q' )/( 4*π*ε*c )

  内球と外球の間にある半径 r ( a<r<b ) の球面を考えると、その球面に含まれる電荷は、内側の球の表面電荷 -Q' だけだから、
  半径 r の球面上の電界を E2(r) とすれば、Gaussの定理より、4*π*r*E2(r) = - Q'/ε → E2(r) = -Q'/(4*π*ε*r^2) --- [2]
  半径 r の球面上の電位を V2(r) とすれば、V1 - V2(r) =∫[r~b] E2(r) dr = -Q'/(4*π*ε)*( 1/b - 1/r ) 。
  式[3]から、V1 =( Q-Q' )/( 4*π*ε*c ) なので、V2(r) = V1 + Q'/(4*π*ε)*( 1/b-1/r ) = ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/r )
  内側の球は接地されているので、V2(a) = 0  →  ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/a ) = 0
  したがって、Q' = Q/{ c* ( 1/a - 1/b + 1/c ) } = Q/{ 1 + c*( 1/a - 1/b ) } --- [3]

(3)電界分布
  式[3]を式[1],[2] に代入すれば
  E1(r) = ( Q-Q' )/( 4*π*ε*r^2 ) = Q*[ 1 - 1/{ 1 + c*( 1/a - 1/b ) } ]/( 4*π*ε*r^2 ) = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  E2(r) = -Q'/(4*π*ε*r^2) = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(4)まとめ
  a<r<b のとき、E = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  c<r  のとき、 E = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷...続きを読む

Q導体で同心の外球、内球があり内球が接地されています。

http://oshiete1.goo.ne.jp/qa3031710.html

ここの問題の条件で、内外球の静電容量を求めよという問題があります。今やっている問題とほぼ一致した条件なので引用させてもらいました。

僕自身、接地するということがいまいちどういうことなのか理解できていない感じなのですが、
引用した質問の電界の答えから、内外球の電位差を求めてC=Q/Vという定義から静電容量を求めたところ、答えと一致しました。

そこで疑問がわいたのですが、C=Q/Vの定義が使えるのは外球と内球にそれぞれ-Q、+Qの電荷を与えているときと教科書に書いてありました。

この問題だと、外球にQの電荷を与えているだけで、内球には-Q'の電荷が誘起されています。
なぜC=Q/Vの定義から答えが算出できたのでしょうか?

電磁気学の理解に乏しいので詳しく教えていただきたいです。

Aベストアンサー

「与えた」に余りこだわりすぎると
「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.

わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在することになります.

上の孤立球の問題も,無限遠から孤立球に電荷 Q を移したと考えればよろしい.
そうすると,孤立球に +Q の電荷があるわけで,無限遠との電位差 Q/4πε_0 a から
Q = CV にしたがって C = 4πε_0 a と容量が求まります.

さて,今の問題で内球を接地したというのは内球と無限遠を導線でつないだ,
つまり内球と無限遠との電位差を同じにしたことを意味します.
で,上の解釈に従えば,内球と無限遠から外球(正確には外球殻)へ電荷 Q を移すことになります.
外球殻には内側表面に電荷に +Q' ,外側表面に +Q'' が分布します.
記号は引用された
http://oshiete1.goo.ne.jp/qa3031710.html
に従っています.
内球には -Q',無限遠には -Q'' があることになりますが,
Q' と Q'' の割合は2つの電位差,すなわち外球殻と内球の電位差,および外球殻と無限遠の電位差が
等しくなるように決まります.
内球と無限遠は導線で結ばれていますから電位は同じでないといけないのです.
もし,内球からのみ電荷を外球殻に移しても,
内球と無限遠は導線で結ばれていますから電荷は自由に行き来できるので,
上の条件に従うように勝手に電荷が移動します.
引用された inara さんのご回答はこうやって Q' と Q'' を決めています.

図で表すなら

          │
      ┌───┴───┐
      │       │
      │       │
外球殻内側─┴─     ─┴─外球殻外側
                    
   内球─┬─     ─┬─無限遠
      │       │
      │       │
      └───┬───┘
          │

と思えばよいでしょう.
実際,求めた容量は2つのコンデンサーの容量を合成したものになっていますので,
それもご確認下さい.

「与えた」に余りこだわりすぎると
「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.

わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在するこ...続きを読む

Q接地した同心導体球の問題について・・・

同心導体球において、内球半径a[m],球殻半径b[m],外球半径c[m]と与えられている。
内球の電荷Q1=5*10^-10,外球の電荷Q2=-4*10^-10であり、外球は接地している。
このとき、r>cの範囲における、rの電界と電位を表せ。
と言う問題なのですが、

接地という概念についていまいち理解することができません。
まず、接地しているという条件から、おそらく電位は0[V]であると思います。
そして、r>vにおける電界を考えると、内側の電位の合計「Q1+Q2」の点電荷が球の中心にあると考え
E=(Q1+Q2)/(4πεr^2)[V/m]によって求めることができるのでしょうか。

更に問題では、内側の導体と外側の導体の電位差を求めよ。と続きます。
外球が接地しているという条件より、外側の導体の電位は0[V]となることは分かります。
しかし、内球の電位を考えた場合、
通常、グランドに繋がっていない場合は
V=((+Q1)/(4πεa))+((-Q1)/(4πεb))+((Q1+Q2)/(4πεc))
となると思うのですが、
r>cにおける電位は0[V]だと先ほど求めたため、
V=((+Q1)/(4πεa))+((-Q1)/(4πεb))+0
とも考えられる気がします。

グランドに繋ぐことで、((Q1+Q2)/(4πεc))の値は消えてしまうのでしょうか。
この問題は、以前の試験問題だったようで、回答がないので、はっきりとした答えが分かりません。

どなたか可能でしたらお返事お願いします。

同心導体球において、内球半径a[m],球殻半径b[m],外球半径c[m]と与えられている。
内球の電荷Q1=5*10^-10,外球の電荷Q2=-4*10^-10であり、外球は接地している。
このとき、r>cの範囲における、rの電界と電位を表せ。
と言う問題なのですが、

接地という概念についていまいち理解することができません。
まず、接地しているという条件から、おそらく電位は0[V]であると思います。
そして、r>vにおける電界を考えると、内側の電位の合計「Q1+Q2」の点電荷が球の中心にあると考え
E=(Q1+Q2)/(4πεr^2)[V/m]に...続きを読む

Aベストアンサー

eatern27 さん:
> 半径a,b,cの球殻が3つあるという事でいいですか?

半径 a の導体球(中まで詰まっている)と
内径 b ,外径 c の導体球殻という系のことでしょう.
すなわち,0<r<a の部分と b<r<c の部分が導体です.

> そして、r>vにおける電界を考えると、
> 内側の電位の合計「Q1+Q2」の点電荷が球の中心にあると考え
> E=(Q1+Q2)/(4πεr^2)[V/m]によって求めることができるのでしょうか。

そうはなりません.
球殻を接地したのですから球殻の電位はゼロ,
球殻と無限遠の間の電場はゼロのはずです.
つまり,問題の前半の答は計算するまでもなく明らかでした.

多少詳しく見てみます.
まず,導体内では電場はゼロですから
0<r<a と b<r<c では E=0 です.
内側の球に与えた電荷 Q1 は導体表面に均等に分布します.
したがって,a<r<b では Gauss の法則からわかりますように,
電場は E=Q/4πεr^2 です.
Q1 の電荷が中心にあるように見えます.

次に,外側の球殻に与えた電荷は導体表面に分布するのですが,
球殻内側と無限遠に分かれて分布します.
外側球殻を接地していますからこうなります.
もし設置していなければ,内側表面(r=b)と外側表面(r=c)に分かれて分布します.
さて,半径 r が b<r<c であるような球面に Gauss の法則を適用してみます.
導体内では電場がゼロですから当然電場の面積分もゼロです.
これが半径 r の球内の電荷総量の 1/ε に等しいというのが Gauss の法則ですから,
半径 r の球内の電荷総量はゼロです.
内側の球に Q1 だけ電荷が分布しているのですから,
球殻の内側表面(r=b)には -Q1 だけの電荷が分布していないといけません.
球殻には Q2 の電荷を与えたのですから,
Q2+Q1 だけどこかにないといけないわけで,
Q2+Q1 は接地した線を伝わって無限遠まで逃げていきます.
つまり,球殻外側表面(r=c)には電荷はありません.

今度は r>c の球面に Gauss の定理を適用します.
内部の電荷総量はゼロですから,電場もゼロです.
導体球殻と無限遠とは同電位ですから(接地!),
その間で電場が存在しないのは当然です.
これは最初に述べました.

まとめますと,
0<r<a では E=0
a<r<b では E=Q/4πεr^2
b<r    E=0
です.

----------------------

もし,外側の球殻を接地していなければ以下のようになります.
今度は導体球殻外側表面(r=c)に Q2+Q1 の電荷が均等に分布します
(つまり,接地していないので,これ以上遠くに逃げられない).
r>c の球面に Gauss の定理を適用したときに,
内部の電荷総量は Q2 になりますから
0<r<a では E=0
a<r<b では E=Q1/4πεr^2
b<r<c   E=0
c<r  では E=Q2/4πεr^2

----------------------

電場がわかれば電位の計算は大丈夫ですよね.
それから,電荷 Q1=5*10^-10 などに単位が抜けていますね.

eatern27 さん:
> 半径a,b,cの球殻が3つあるという事でいいですか?

半径 a の導体球(中まで詰まっている)と
内径 b ,外径 c の導体球殻という系のことでしょう.
すなわち,0<r<a の部分と b<r<c の部分が導体です.

> そして、r>vにおける電界を考えると、
> 内側の電位の合計「Q1+Q2」の点電荷が球の中心にあると考え
> E=(Q1+Q2)/(4πεr^2)[V/m]によって求めることができるのでしょうか。

そうはなりません.
球殻を接地したのですから球殻の電位はゼロ,
球殻と無限遠の間の電場はゼロのは...続きを読む

Q同軸円筒1mあたりの静電容量

まず私は

コンデンサーの静電容量C=εS/lを振り返り
θのときaθ bθ
θ+Δθのときa(θ+Δθ)、b(θ+Δθ)と考えました
しかしコンデンサーの面積はaΔθ)になるのでしょうか?bΔθになるのでしょうか?

どのようにもとめるのでしょうか?

Aベストアンサー

 平行平板コンデンサの場合の式を、曲面によるコンデンサに当てはめるのは無理ではないでしょうか。
 C=Q/Vという式まで戻り、QからE,EからVを求めたほうが良いと思います。
 


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング