No.2ベストアンサー
- 回答日時:
まず、結論です。
回帰直線をy=axとすると
a=(Σ(xi・yi))/(Σxi^2)でいいはずです。
求め方が必要なら補足してください。
No.1
- 回答日時:
こんばんは
直線回帰で原点を通るということは
y=ax
と言うことですよね。
yの値とxの値との比を求めるだけで計算できますよ。
後は平均値を求めれば良いだけだと思いますが。
直線回帰については以下のURLに詳しい説明があります。
また、excelをお使いでしたら、グラフ機能の中の散布図を使って簡単に計算できます。
参考URL:http://aoki2.si.gunma-u.ac.jp/lecture/Regression …
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 統計学 直線の傾き(回帰係数)から相関係数を計算できるのでしょうか? 2 2022/09/16 19:28
- 数学 ベクトル方程式(ヘッセの標準形)についての質問 2 2022/04/23 18:00
- 大学・短大 【線形代数について質問です】 点(4.3)を点(3.4)に写す1次変換のうち、原点を通る直線について 1 2023/06/11 14:29
- 統計学 1次式の線形回帰 1 2023/05/10 14:49
- 数学 原点Oを通り、△OABの面積をに等分する直線と直線Lとの交点をCとするとき、この点Cの座標を求めよ。 4 2022/08/25 11:54
- 数学 この問題が分かりません! 右図の直線①②の式は、y=-x+4①、 y=3/4x+1② である。2つの 3 2022/05/04 22:29
- 数学 数B 2直線のなす角 ベクトル(-1,√3)に垂直で、原点Oからの距離が4である直線の方程式を求めよ 2 2022/06/30 01:05
- 数学 数学(2直線の交点を通る直線) 例えば 「2x+3y−7=0」と「4x+11y−1)=0」という直線 3 2023/06/16 17:08
- 数学 数II 質問 放物線y=3-x²(-√3≦x≦√3)とx軸に平行な直線が異なる2点A,Bで交わるとき 3 2023/08/16 18:17
- 数学 数学の一次関数の問題解いて欲しいです!お願いします! 次の直線の式を求めなさい ・傾きがー3/5で、 6 2022/08/24 23:30
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
メール文章で直線の描き方について
-
三角形の辺の和が最小になるよ...
-
3つの平面が交わる(または交わ...
-
円x²+y²=1と直線y=x+mが接する...
-
3点が「同一直線上」と「一直...
-
数学の場合分けの番号振り
-
このSを正射影した面積がScosθ...
-
不等号をはじめて習うのは?
-
ベクトルの質問です。
-
ユークリッド幾何学とは?
-
general formとstandard formの...
-
回帰直線…。
-
三角形の3つの頂点から出る3本...
-
組み合わせの問題
-
数B 2直線のなす角 ベクトル(-1...
-
直線補完?
-
座標計算でのTan(θ)-1/Cos(θ)に...
-
平面上に8本の直線があり、その...
-
数学Aの問題について
-
川端康成について。 「隅田川の...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
メール文章で直線の描き方について
-
PowerPoint 罫線で直線を引く...
-
ユークリッド幾何学とは?
-
3点が「同一直線上」と「一直...
-
円x²+y²=1と直線y=x+mが接する...
-
グランドにきれいな長方形を描...
-
数Ⅱ、円と直線に関する三角形の...
-
電気ハンドホールの設置間隔の...
-
不等号をはじめて習うのは?
-
このSを正射影した面積がScosθ...
-
次の2直線のなす鋭角θをもとめ...
-
直線の傾き「m」の語源
-
円を直線で分割すると・・・?
-
エクセル・パワーポイントなど...
-
excelで、曲線の長さを計測する...
-
パワーポイント2010 コネクタ...
-
実数x,yはx^2+y^2=4を満たすと...
-
general formとstandard formの...
-
120分の番組を1.5倍速で見ると8...
-
座標平面上で、不等式│x-3│+│...
おすすめ情報