A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
補足です。
最初の回答にある「近接領域」というのは私の造語です。フレネル領域は別名、近傍領域と言うので、それより近いという意味でつけました。
>ただ、{(x0-u)^2+(y0-v)^2}^2/(8w^3 ) ~ D^4/(8w^3 ) のように近似していいものか悩むところでもあります。。
手持ちのテキストにはこの領域のことは書いてありませんでしたので間違っているかもしれません。もしこの問題がレポートか何かなら、ちゃんと調べてみてください。
>フレネル近似はフラウンホーファー近似を厳密化したしたものですから、フランウンホーファ領域を含んいると思います。
確かに、フレネルはフラウンホーファーの式を厳密化したものなので、式的にはフラウンホーファーを含んでいますね。ただ、テキストの図では、実線で3つのゾーンにはっきり分けて描かれています(問題の近接ゾーンは斜線になっていて名前が何も書かれていません)。
No.1
- 回答日時:
手元の参考書によると、開口面(1辺がDの正方形)からの距離をzとしたとき
フレネル領域:z<D^2/λ
フラウンホーファ領域:D^2/λ<z
となっています。問題は円開口のようですが、オーダは同じだと思いますので、D=1cm、λ=630nm(赤色)ならばz=158.7mが境界となります。
conv2006さんの表記では開口面が(x,y)、観測面が(u,v)となっているので、以下、それに合わせます。開口内の1点(x0,y0,0)と観測点(u,v,w)との距離 r が回折像の式の中に出てくるのですが、それを多項式で近似したときに、何次までとるかでフレネル領域とフラウンホーファ領域に分けられます。
r = √{w^2+(x0-u)^2+(y0-v)^2}
= w√[1+{(x0-u)^2+(y0-v)^2}/w^2]
= w + {(x0-u)^2+(y0-v)^2}/(2w) - {(x0-u)^2+(y0-v)^2}^2/(8w^3) + ...
= w + (u^2+v^2)/(2w) - (x0u+y0v)/w + (x0^2+y0^2)/(2w) - {(x0-u)^2+(y0-v)^2}^2/(8w^3) + ... --- (1)
式(1)の第3項までとったのがフラウンホーファ近似、第4項までとったのがフレネル近似です。どっちをとるかは第4項 (x0^2+y0^2)/(2w) の大きさにより、テキストによると
(x0^2+y0^2)/(2w) = π/k = λ/2
を境目としているようです。1辺の長さがDの正方形の開口の場合に計算すると、 w = D^2/λのときに上式が成り立つとのことです。
conv2006さんのは「z^3 >> 1/8λ((x-u)^2+(y-v)^2)^2」を条件としていますが、これは式(1)の第5項が<<1という条件に相当すると思います。これはフレネル近似すら使えない近接領域ですね(そうか、conv2006さんが知りたいのは近接領域とフレネル領域の境界ですね)。上と同じように計算して、D^2 ~ {(x0-u)^2+(y0-v)^2}^2と近似すれば、
{(x0-u)^2+(y0-v)^2}^2/(8w^3 ) ~ D^4/(8w^3 ) = λ/2
w^3 = D^4/(4λ)
となるのではないでしょうか?最初と同様に、D = 1cm、λ = 630nm(赤色)で計算すると、w = 0.158mとなりました。したがってフレネル近似できるフレネル領域は、D = 1cm、λ = 630nm(赤色)ならば、0.158 m< w <158.7m になるのでしょうかね。以上はあくまで正方形開口の場合(円開口なら、円筒座標系を使うはずですが、なぜ(x,y,z)なのですか?)
【参考文献】 飯塚啓吾「光工学」(共立出版)pp. 37-39
早速の詳しいご回答ありがとうございます。質問が分かりにくくて混乱させてしまったみたいですいません。inaraさん御指摘のように質問はフレネル領域と近接場の境界についてです。
{(x0-u)^2+(y0-v)^2}^2/(8w^3 ) ~ D^4/(8w^3 ) のように近似するということですね。
inaraさんの式(1)の第五項とフレネル近似のz^3 >> 1/8λ((x-u)^2+(y-v)^2)^2を見比べると、どうやら、
{(x0-u)^2+(y0-v)^2}^2/(8w^3) = λ
としたほうがよさそうですね。
これでD = 1cm、λ = 630nmとして計算しなおすと
w=0.12mとなりました。
ネットでいろいろ探してみたのですが、どうやら開口が1cmの場合は約10cm離したらいいみたいですね。計算結果と大体あっていますね。(λが同じと仮定した場合)
http://www.ee.t.u-tokyo.ac.jp/~zhe/_private/opti …
ただ、{(x0-u)^2+(y0-v)^2}^2/(8w^3 ) ~ D^4/(8w^3 ) のように近似していいものか悩むところでもあります。。
>手元の参考書によると、開口面(1辺がDの正方形)からの距離をzと
>したとき
>フレネル領域:z<D^2/λ
>フラウンホーファ領域:D^2/λ<z
フレネル近似はフラウンホーファー近似を厳密化したしたものですから、フランウンホーファ領域を含んいると思います。
御回答ありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
質量m 半径aの一様な円環の慣性...
-
2物体の運動を重心系で考えると...
-
スパン方向とはどの方向ですか?
-
2物体の慣性モーメント
-
高校物理基礎で、変位と位置の...
-
径方向?放射方向?
-
SPEC 時間を止めて、銃で放たれ...
-
鉛直面内での、円運動を考える...
-
2つのバネに挟まれた物体の振動...
-
電磁気学、TEMモードでマクスウ...
-
力学の問題です。(1)しかわかり...
-
放物線の対称性??
-
英語で位置は何というんでしょう?
-
表式ってなんですか?数学用語?
-
段差を乗り越えるのに必要なト...
-
特殊相対性理論におけるトンネ...
-
さらに・・4次元距離って?
-
物理なんですけど、変位=x座標...
-
運動エネルギーと座標変換
-
物理 慣性系の存在
おすすめ情報