プロが教えるわが家の防犯対策術!

「3つの確率変数 x1,x2,x3 が独立 ⇒ u=x1+x2 と x3 は独立 」

という直感的には明らかな事実を厳密に証明したいのですが、
以下の証明で日本語表現も含めておかしな点はあるでしょうか?

(証明)
x1,x2,x3は独立なので、同時確率密度関数 P(x1,x2,x3) は
それぞれの密度関数の積で以下のように表される。

P(x1,x2,x3)=Q(x1)・R(x2)・S(x3)  (※)

ここで、u=x1+x2 とし、uとx3の同時確率密度関数を φ(u,x3) とするとφ(u,x3)は(※)の式においてx1とx2の和がuになる組み合わせの確率の合計となる。
よって、

φ(u,x3)=∫[-∞~+∞]Q(u-t)R(t)S(x3)dt

=∫[-∞~+∞]Q(u-t)R(t)dt・S(x3) となる。

これは、φ(u,x3)がuの関数と、x3の関数の積となることを示しており、
uとx3が独立であることが示された。
                            証明終

よろしくお願いします。



 

このQ&Aに関連する最新のQ&A

A 回答 (1件)

ヨイと思います。

    • good
    • 0
この回答へのお礼

ありがとうございました!

お礼日時:2008/04/20 12:04

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

QΣと∫って入れ替えできるんですか!?

Σと∫を入れ替えられる条件とはなんでしょうか?
例えば
∫Σt^n/n!dt
という式があって
Σ∫t^n/n! dt
のようにΣと∫が入れ替えて使っているのを見たことがあります。

さらに、同じようにlimと∫が入れ替えて使える時と言うのはどういうときなんでしょうか?
lim∫1/t dt 
=∫lim1/t dt
みたいな感じです。

お願いします!教えてください!!

Aベストアンサー

#1です。
A#1の補足について
普通の有限項和のΣではもちろんできることは積分の定義から明らかですのでA#1のように回答したわけです。
漠然とした一般的な質問では一般的な回答しか得られません。

無限項和の特別なケースの場合などについての回答を得たければ
>出来ない場合もあって、交換したら答えが異なるケースがあったんで
このケースの具体的な式や例をあげて、こういう場合は交換できませんか?
この交換での式変形はあっていますか?
特に積分の範囲やΣの和の範囲を明記して、有限範囲なのか、無限範囲なのかも明記する
などして質問を投げないと希望するような回答は得られませんよ。
特に、特異なケースも含めた一般論の回答は特に難しいですから(現在も解決していない特異なケースも含まれる可能性もあるので)。

また、どの程度(高校レベル、大学レベル、それ以上の大学院や専門家レベル)での回答を求められているか、回答者には分かりませんし、
質問者に理解できないレベルの回答をしても意味がないですから。

有限と無限の間には、簡単に有限で成り立つ法則が必ずしも、無限では成り立たない(適用できない)ケースがしばしば現れますから。。。

#1です。
A#1の補足について
普通の有限項和のΣではもちろんできることは積分の定義から明らかですのでA#1のように回答したわけです。
漠然とした一般的な質問では一般的な回答しか得られません。

無限項和の特別なケースの場合などについての回答を得たければ
>出来ない場合もあって、交換したら答えが異なるケースがあったんで
このケースの具体的な式や例をあげて、こういう場合は交換できませんか?
この交換での式変形はあっていますか?
特に積分の範囲やΣの和の範囲を明記して、有限範囲なのか、...続きを読む

Q共分散について

共分散について教えていただきたいのですが、
互いに独立の確率変数x、yがある場合、
共分散が0になることはどうすれば証明できるのでしょうか?

よろしくお願いします。

Aベストアンサー

kumav113さんの考えている共分散の定義を書かれていないので,
一般的と思われる定義でやりますが,いずれにせよ
XとYとが互いに独立 <=> E(XY)=E(X)E(Y) (E(X)はXの期待値)
であることを用いればできるはずです.

確率変数X, Yに対して,共分散Cov(X, Y)を
  Cov(X, Y) = E((X-E(X))(Y-E(Y)))
と定義すると,

XとYとが互いに独立 <=> E(XY)=E(X)E(Y)
ならば,
Cov(X, Y)
= E((X-E(X))(Y-E(Y)))
= E(XY) - E(E(X)Y) - E(E(Y)X) + E(E(X)E(Y))
= E(X)E(Y) - E(X)E(Y) - E(Y)E(X) + E(X)E(Y)
= 0.

E(E(X)Y) = E(X)E(Y)などはよいですね.
逆は成り立たない(共分散が0であっても,互いに独立とは限らない)ことに注意する.

Q上極限、下極限が理解できません

大学で習っているのですが、limsupやliminfなどが定義を見ても、どういう意味なのか理解できません。

上界、下界、上限、下限については例があったので、なんとか理解することができました。


X={1,2,3}⊆Zのとき、下界の1つとして0がとれる。

こんな感じで、簡単な例つきで説明して下さると、理解できると思うのですが・・・。
よろしくお願いします。

Aベストアンサー

上極限

sin(n)で考えましょう。nは自然数です。
sin(n)は振動しているので極限はないけど、
「nが大きい時(というか初めからだけど)1を超えることはない」
「1付近の値を何回も(無限回)とる」
から1が上極限です。
ことばでいえば、
「ずっと先のほうでは、上極限の値より大きくならない」
(極限の意味でです。∀ε>0に対し上極限+εより大きくならないってことです)



この例では下極限はー1ですね。

(sin(n)-1)*n の場合だと、
上極限は0で、下極限は「なし」(-∞)となりますね。

Q事象の独立の証明について

事象A,Bが互いに独立ならば、
 AとBバーも互いに独立
 AバーとBバーも互いに独立
ということの証明がわかりません。ご教授ください。

Aベストアンサー

Aが起きた上でBが起きる条件付き確率をP_A(B)、
Bが起きた上でAが起きる条件付き確率をP_B(A)、
とすると、AとBが独立とは
P_A(B)=P(B)
P_B(A)=P(A)
が成り立つことです。(片方が成り立てばもう片方も成り立ちます。)

またBの余事象をBbarで表すと、
P(Bbar)=1-P(B)
P_A(Bbar)=1-P_A(B)
が成り立ちます。

もう自明ですね。
あとはご自分で証明の形にしてください。

Q確率変数の和の問題

確率変数の和の問題です。

2つの確率変数XとYが、互いに独立に一様分布に従うとするとき、
確率変数X+Yはどのような分布の形状になるのでしょうか?

結局、和も一様分布になるのでしょうか?分からなくなってしまいました。
教えて下さい。

Aベストアンサー

連続型でピンとこないなら、離散型で考えてみれば?例えばサイコロを1個振るでしょ。1から6に一様(離散なので一様的)に出るね。2回振って和を取ると、平均3.5*2=7だけど2から12が一様的には出ないよね。
元問題を正確に解くと、確率変数X,Yの確率密度関数をf(x),g(y)として。確率変数Z=X+Yの確率密度関数をh(z)とすると。
h(z)=∫[-∞,∞]f(z-y)g(y)dy または h(z)=∫[-∞,∞]f(x)g(z-x)dx を計算すればよい。
問題よりf(x)=1 (0≦x≦1),g(y)=1 (0≦y≦1) なので 0≦z≦1のときyは0≦y≦z,1<z≦2のときz-1≦y≦1の範囲をとる。
0≦z≦1 のとき h(z)=∫[0,z]f(z-y)g(y)dy=∫[0,z]1・1dy=z
1<z≦2 のとき h(z)=∫[z-1,1]f(z-y)g(y)dy=∫[z-1,1]1・1dy=1-(z-1)=2-z

Q密度関数の求め方(確率論)

問題
X,Y:標準正規分布N(0,1)を分布にもつ独立な実確率変数とします
このときZ=X/Yの分布は1/π(1+x^2)を密度関数に持つことを示せ

というものなんですが、
これはいわゆるCauchy分布です
Zの分布関数を地道に計算すればいいんですが、
どうもうまくできません。
計算の経過も丁寧に解説してくれる人がいたらどうかお願いします

ただ、公式を適用するとかいうのはなしでお願いします

Aベストアンサー

 なんだか難しい話をなさってますが、単なる変数変換の問題でしょう?超関数を使わなくても計算できますし、分布関数を微分する必要もないと思います。
 確率変数X,Yの関数であるZ(X,Y)の確率密度を求めるには、
p(X,Y)dXdY = f(Z,U)dZdU
となるように(X,Y)を(Z,U)に写像してやって、
q(Z)=∫f(Z,U)dU (U=-∞~∞)
を計算すれば良い。それだけです。

dXdY = |(∂X/∂Z)(∂Y/∂U)-(∂X/∂U)(∂Y/∂Z)| dZdU
ですから、
U=Y
とおくと(X,Y)と(Z,U)は1対1の写像であり、
dXdY = |Y|dZdU
従って、
f(Z,U)=|Y|p(X,Y)
であり、
q(Z)=∫|Y|p(X,Y) dY (Y=-∞~∞)
の計算です。
P(X,Y)=φ(X)φ(Y), φ(x)=(1/√(2π)) exp(-x^2/2)
だから、
P(X,Y)=exp(-(X^2+Y^2)/2)/(2π)
よって、
q(Z)=(1/(2π))∫|Y| exp(-(1+Z^2)(Y^2)/2) dY (Y=-∞~∞)
=2(1/(2π))∫Y exp(-(1+Z^2)(Y^2)/2) dY (Y=0~∞)
= 1/(π(Z^2+1))

 なんだか難しい話をなさってますが、単なる変数変換の問題でしょう?超関数を使わなくても計算できますし、分布関数を微分する必要もないと思います。
 確率変数X,Yの関数であるZ(X,Y)の確率密度を求めるには、
p(X,Y)dXdY = f(Z,U)dZdU
となるように(X,Y)を(Z,U)に写像してやって、
q(Z)=∫f(Z,U)dU (U=-∞~∞)
を計算すれば良い。それだけです。

dXdY = |(∂X/∂Z)(∂Y/∂U)-(∂X/∂U)(∂Y/∂Z)| dZdU
ですから、
U=Y
とおくと(X,Y)と(Z,U)は1対1の写像であり、
dXdY = |Y|dZdU
従って、
f(Z,U)=|Y|p(...続きを読む

Q何故偏微分が法線の成分に

 関数f(x,y,z)=0という曲面があって曲面上のある点Pの接平面を求めるとき
 Fx*X'+Fy*Y'+Fz*Z=0という式が出ます。
この式の意味するところはFx Fy FzがP点での法線ベクトルのx y z成分になるということらしいのですがよく理解出来ません。何故偏微分が法線ベクトルの成分になるのでしょうか?教えてください!

Aベストアンサー

>>斜面の勾配が最も急な向きは、(Fx, Fy) で与えられることは感覚的に納得できるでしょう。
>ここがよく分かりません。Fx=x-y平面でx方向のみ移動させた時のZの増加率になりますよね。何故これが法線ベクトルのx方向になるかが分かりません。

ここで言ったのは、(Fx,Fy)というベクトルが、"最大の勾配の方向"を与えるということです。
つまり、斜面にボールを置いたとき、-(Fx,Fy)の方向に転がるということです。
そして、"最大の勾配の方向"は等高線と垂直なはずだから、(Fx,Fy)は等高線の法線と同じ方向だと分かる。
ということなのですが、これで質問の回答になっているでしょうか…。

以下、(Fx,Fy)が"最大の勾配の方向"を与える理由を書きます。

F(x,y)を全微分すれば、
  dF = Fxdx + Fydy = (Fx,Fy)・(dx,dy)
よって,(dx,dy)が(Fx,Fy)と同一方向のとき dF は最大,すなわち (Fx,Fy) は"最大の勾配の方向"を与える.

イメージとしては次のような感じです。
F(x,y) = ax (x方向に傾いた板)では、(Fx,Fy) = (a,0) でx方向を向くベクトル。
F(x,y) = by (y方向に傾いた板)では、(Fx,Fy) = (0,b) でy方向を向くベクトル。
F(x,y) = ax+by (x方向とy方向の傾きを持つ板)では、(Fx,Fy) = (a,b) で斜面の方向を向くベクトル。(ノートか何かを傾けて確認してみるといいかもしれません)
微分可能な曲面は局所的には平面とみなせるから、(Fx,Fy) はその点での"最大の勾配の方向"を与えます。

ところで、ベクトル解析では(Fx,Fy)というベクトルを、grad F とか、∇F と書くのですが、ご存知ないでしょうか…。
もしご存知ないなら、私の説明は分かりにくいかもしれません。
参考までにwikipediaのURLの載せておきます。
http://ja.wikipedia.org/wiki/%E5%8B%BE%E9%85%8D

参考URL:http://ja.wikipedia.org/wiki/%E5%8B%BE%E9%85%8D

>>斜面の勾配が最も急な向きは、(Fx, Fy) で与えられることは感覚的に納得できるでしょう。
>ここがよく分かりません。Fx=x-y平面でx方向のみ移動させた時のZの増加率になりますよね。何故これが法線ベクトルのx方向になるかが分かりません。

ここで言ったのは、(Fx,Fy)というベクトルが、"最大の勾配の方向"を与えるということです。
つまり、斜面にボールを置いたとき、-(Fx,Fy)の方向に転がるということです。
そして、"最大の勾配の方向"は等高線と垂直なはずだから、(Fx,Fy)は等高線の法線と同じ方...続きを読む

Q行列の正定・半正定・負定

行列の正定・半正定・負定について自分なりに調べてみたのですが、
イマイチ良くわかりません。。。
どなたか上手く説明していただけないでしょうか?
過去の質問の回答に

>cを列ベクトル、Aを行列とする。
>(cの転置)Ac>0
>となればAは正定値といいます。
>Aの固有値が全て正であることとも同値です。

とあったのですが、このcの列ベクトルというのは
任意なのでしょうか?
また、半正定は固有値に+と-が交じっていて、
負定は固有値が-のみなのですか?

どなたかお願いしますorz

Aベストアンサー

まず、行列の正定・半正定・負定値性を考えるときは、
行列は対称行列であることを仮定しています。
なので、正確な定義は、

定義 n次正方 "対称" 行列 A が正定値行列であるとは、
『ゼロベクトルではない任意の』n次元(列)ベクトル c に対して、
(cの転置)Ac>0
となることである。

です。

対称行列Aが正定値なら、その固有値はすべて正です。
(cとして固有ベクトルをとってみればよいでしょう。)
逆に、対称行列Aの固有値がすべて正なら、Aは正定値行列です。

ただし、対称行列ではないAの固有値がすべて正だからといって、
(cの転置)Ac>0とは限りません。
例えば、
A =
[ 1 4 ]
[ 0 1 ]
とすると、Aは対称行列ではなく、固有値は1です。
しかし、
(cの転置) = [ 1, -2]
とすると、
(cの転置)Ac = -3 < 0
となってしまいます。(実際に計算して確かめてください。)
なので、行列Aが対称行列であるという条件はとても重要です。

また、半正定値の定義は、上の定義で
『ゼロベクトルではない任意の』 --> 『任意の』
と書き直したものです。
このとき、半正定値行列の固有値はすべて0以上です。(つまり0も許します。)
逆に、対称行列の固有値がすべて0以上なら、その行列は半正定値です。

さらに、負定値の定義は、『ゼロではない任意の』ベクトルcに対して
(cの転置)Ac<0
となることです。
固有値についてはもうわかりますね。

まず、行列の正定・半正定・負定値性を考えるときは、
行列は対称行列であることを仮定しています。
なので、正確な定義は、

定義 n次正方 "対称" 行列 A が正定値行列であるとは、
『ゼロベクトルではない任意の』n次元(列)ベクトル c に対して、
(cの転置)Ac>0
となることである。

です。

対称行列Aが正定値なら、その固有値はすべて正です。
(cとして固有ベクトルをとってみればよいでしょう。)
逆に、対称行列Aの固有値がすべて正なら、Aは正定値行列です。

ただし、対称行列...続きを読む

Q固有値と固有ベクトル・重解を解に持つ場合の解法

以前質問させていただいたのですが、教科書に固有値が重解の場合の固有ベクトルを求める解法が省かれていて理解できませんでした。
問題はこんな感じです。
2×2行列式A
A=
|1 -1|
|4 -3|
の固有値と固有ベクトルを求めよ。
(自分の解法)
まず
与式=
|1-t -1|
|4 -3-t|
サラスの方法で展開し、
(1-t)(-3-t) - (-1)・4
=t^2 + 2t 1
=(t+1)^2
となるので固有値をλ1,λ2として、
λ1=-1,λ2=-1
(ここまではできたのですが、解が重解になってしまいました。固有ベクトルを求める方法ができなくてこまってます。)

固有値λ1=λ2=-1より、求めるベクトルをx=t[x1,x2]とすると
A=
|1-(-1) -1 |
|4 -3-(-1)|
=
|2 -1|
|4 -2|
よって
2x1-x2 = 0
4x1-2x2 = 0
この二つは同一方程式より、x1 = 2x2
任意の定数αをもちいてx1 = αとすれば、
x = αt[1,2]

しかし、答えには、
x1 = αt[1,2]
x2 = βt[1,2] + αt[0,-1]

とありました。なぜなでしょう?
参考にしたページなんかを載せてくれるとありがたいです。

ちなみにこんな問題もありました。
A=
|0 0 1|
|0 1 0|
|-1 3 2|

これは固有値がすべて1になる場合です。
これも解法がのってませんでした。

以前質問させていただいたのですが、教科書に固有値が重解の場合の固有ベクトルを求める解法が省かれていて理解できませんでした。
問題はこんな感じです。
2×2行列式A
A=
|1 -1|
|4 -3|
の固有値と固有ベクトルを求めよ。
(自分の解法)
まず
与式=
|1-t -1|
|4 -3-t|
サラスの方法で展開し、
(1-t)(-3-t) - (-1)・4
=t^2 + 2t 1
=(t+1)^2
となるので固有値をλ1,λ2として、
λ1=-1,λ2=-1
(ここまではできたのですが、解が重解になってしまいました。固有ベクトルを求める方法ができなくて...続きを読む

Aベストアンサー

重解であろうがどうであろうが,求める方法は同じだから
わざわざ取り上げることはないという話でしょう.

No.1さんと同様,記号の混乱があるので
「参考書」やらが間違ってるのか,質問者の転記ミスなどかは
分かりませんが,
>とありました。なぜなでしょう?
答えを確かめましたか?
本当にその「解答」があってますか?
大学の数学の本なんて結構間違い多いですよ.

ちなみに・・・λが固有値のとき
(A-λI)x = 0 の解空間が固有空間です.
これは線型写像 A-λI のカーネル Ker(A-λI) だから
n次の正方行列を相手にしてる場合は
n=dim(Im(A-λI))+dim(Ker(A-λI))
=rank(A-λI) + dim(Ker(A-λI))
だから
固有空間の次元
= dim(Ker(A-λI))
= n - rank(A-λI)

したがって,
A=
|1 -1|
|4 -3|
のとき,λ=-1とすれば
A-λI= <<<--- 質問者はここを書き間違えている
|1-(-1) -1 |
|4 -3-(-1)|
=
|2 -1|
|4 -2|
だから,rank(A-λI)=1
よって,固有空間は1次元
だから,本質的に(1,2)以外に固有ベクトルはないのです.
(0,-1)が固有ベクトルではないことは容易に確認できます.

A=
|0 0 1|
|0 1 0|
|-1 3 2|
の場合も同様.A-λIのランクを計算すれば2だから
固有空間の次元は1で,計算すれば(1,0,1)を固有ベクトルと
すればよいことが分かります.

重解であろうがどうであろうが,求める方法は同じだから
わざわざ取り上げることはないという話でしょう.

No.1さんと同様,記号の混乱があるので
「参考書」やらが間違ってるのか,質問者の転記ミスなどかは
分かりませんが,
>とありました。なぜなでしょう?
答えを確かめましたか?
本当にその「解答」があってますか?
大学の数学の本なんて結構間違い多いですよ.

ちなみに・・・λが固有値のとき
(A-λI)x = 0 の解空間が固有空間です.
これは線型写像 A-λI のカーネル Ker(A-λI) だから
n...続きを読む


人気Q&Aランキング