統計に関して全くの素人なもので、お力をお貸しいただけると大変助かります。
現在、仕事でレポートを作成しており、政府統計調査のデータを根拠として示したいのですが、標本調査結果に添付されている「推定値の大きさ別標準誤差率」を見ると、同じ調査でもデータの大きさによって1%未満から30%以上の標本誤差率が存在します。
レポートをまとめる際、例えば同じ「業種別の工場数」の表を記載する場合でも、都道府県ごとなら結果精度が保てても、市区町村ごとでは誤差率が大きくなるため不適切、といったことに注意しなければならないと思うのですが、
一般的に、標準誤差率が何%までなら「信頼できる推定値」といえるのでしょうか(あるいは定義があるのでしょうか)。
ご教示よろしくお願い申し上げます。
No.4ベストアンサー
- 回答日時:
こんにちは。
補足をありがとうございました。
>>>>>
そもそもの疑問が、標準誤差率5%のA県の推定値と30%のB町の推定値から、「A県全体では○○業の工場の割合が35%だが、B町では60%で、25ポイント上回っている」などと結論づけてよいのだろうか?ということでした。
標準誤差率1%の全国結果とA県となら同じように比較してもある程度実態(母集団の平均値?)を反映した結果になると思うのですが、ただの感覚的なものなので、標準誤差率○%以下なら・・みたいな目安はあるのだろうか?と思った次第です。
なるほど。ご質問の趣旨がわかってきました。
それは、「有意差検定」と言います。
「有意差」というのは、文字通り、意味のある差という意味です。
2者(A,B)を比較して、
「AとBは、危険率○○%で、有意差がある。」
というような言い方をします。
「危険率」というのは、有意差検定の結論が間違いである確率のことです。
(注意!: 当然ながら危険率は、標準誤差のことではありません。勿論、標準誤差に関係はありますけれども。)
検定を行うに当たっては、どれだけの危険率を設定するかは、検定を行う人の自由です。
危険率を小さく設定すればするほど、信頼の置ける「厳しい検定」となり、その代わり、有意差なしという結論が出やすくなります。
どれだけの危険率で検定を行うかを最初に「決心」した上で、検定を行います。
http://www.blufi.co.jp/archives/24344389.html
http://www.shiga-med.ac.jp/~koyama/stat/test.html
ここから先は詳しくない(というか、昔やりましたが、ここ10年以上やったことがない)ので、この辺で筆を置かせていただきたいと思います。
ご回答くださりありがとうございました。お礼が遅くなり申し訳ありません。お陰様で、入り口での私の疑問は解決したように思います。
「有意差検定」というのですね。統計学ではきっと基本中の基本みたいなことをお伺いしてしまったにもかかわらず、参考URLまで教えていただきありがとうございました。サイトを拝見したとき、冒頭の数式でもうダメだ・・・と思ってしまったですが、エクセルやWeb上で検定できるプログラムもあることが分かり、試してみようと思います。
いずれにしろ、まずは自分で勉強することが必要なことがよく分かりました。たびたびの拙い質問にご回答いただき、ありがとうございました。
No.3
- 回答日時:
統計学でいう標準誤差とは、いくつかのサンプルを得た場合、その平均値とデータのバラつき(標準偏差という)で示します。
また、何度もサンプルを得ると、その平均値は同じにならない、すなわち平均値にもバラつきがあり、これを標準誤差と言います。このバラつきが小さいほど、その結果に信頼性が高いのですが、統計学では、どの程度だと信頼する、という定義はありません。機器では、精度と表現されていますが、0.1~0.2%程度なら許容範囲でしょう。
データの信頼性については、バラツキ(精度)だけでは不十分です。測定した値そのものの信頼性です。鉛筆の長さをを測定する場合、いい加減なものさしを使うと、長さそのものが違ってきます。これを確度といいます。ですから、測定値の信頼性については、精度と確度の二つを満たす必要があります。
>、標準誤差率が何%までなら「信頼できる推定値」
測定データだと、短い処理か処理工程が長いかにもよりますが、学生の実習だと、5%程度。私は2%以内が目標。分析のプロだと、0.5%以内、と聞いたことがあります。
統計学は、魔法の小箱、という印象があるようですが、検定の結果いえるのは、「有意差がある」ということだけです。「差が無い」はもちろん、「差が大きいとか小さい」とかも、主張できません。その程度の代物です。ですから、「信頼できる推定」を標準誤差から決めるなんぞはできません。ただ、『信頼できない』と判断する数値を公表する人はいないでしょうが(嘘つきになります)、現実には間違っている場合も。
>「業種別の工場数」
工場については、0か1、まぎれることがありません。0.3の潰れかけなんぞは無いからです。誰でも、正確に数えられるので、バラツクことはないと想うのですが。
そうすると、平均はありえませんので、標準誤差も計算できません。
「お宅は、工場ですが」なんぞの同じアンケートを100通だします。これを3回繰り返すと、工場だという回答数は違ってくるので、平均も標準偏差、標準誤差も計算できますが、アンケートを繰り返すような馬鹿な真似はしないでしょうし・・・。
工場の人数なら、工場によって異なるので、標準誤差は出せます。
ご回答くださりありがとうございました。お礼が遅くなり申し訳ありません。
>検定の結果いえるのは、「有意差がある」ということだけです。「差が無い」はもちろん、「差が大きいとか小さい」とかも、主張できません。
>『信頼できない』と判断する数値を公表する人はいないでしょうが(嘘つきになります)、現実には間違っている場合も。
統計の数値と自分が仕事の経験などから得た実感がズレているなあと感じることがあり、標準誤差の大小で採用するデータを決めたらいいのかな?と思ったのですが、そういうことではないのですね。
拙い質問に丁寧にご回答いただき、ありがとうございました。
No.2
- 回答日時:
標準誤差率、つまりは無次元化された標準偏差ですよね。
これはデータの信頼性を測るものではありません。例えばモノサシで長さを測るとき、測る対象自体の誤差とモノサシが持つ欠陥による測定誤差とが加わったものが測定値として出て来ます。信頼できるデータというのは後者の誤差が少ないことを指すので、両者が混じったデータでは測定値の信頼性を測ることはできません。それを測るには測定誤差が分かっていて、それがじゅうぶん小さい計器によるデータと当該測定器によるデータを比較することで達成できます。その標準偏差値の差のパーセンテージがじゅうぶんに小さいとき、その計器は信頼性があると判断でき、従って取れたデータが信頼できるということになります。
ですからある村の標準誤差率が高いからその測定が杜撰ということにはならないのです。データ自体がばらついている可能性があるからです。
こんな夜中に私の拙い疑問にご回答いただき、ありがとうございました。数学のできる方の文章は理路整然と簡潔ですごいです。それなのに私の質問ときたら・・・・。もう少し勉強して自分の頭を整理したいと思います。
No.1
- 回答日時:
こんばんは。
ちょっと失礼な言い方になりますけど、勘弁してくださいね。
「一般的に、標準誤差率が何%までなら「信頼できる推定値」といえるのでしょうか」
という考え方が、すでに間違っています。
標準誤差や標準偏差というのは、
“ある一定の確率で「±誤差%」という範囲の中に入ります”
ということなのです。
つまり、工場Aでの 500±1% と、工場Bでの 500±30% というものを比較したとき、
「500±1%」の信頼度と「500±30%」の信頼度は、全く同じです。
「信頼度」と「ばらつきの大きさ」というのは、全く次元の違う言葉なのです。
市町村毎の結果が、都道府県毎の結果よりもばらつきが大きくなることは当たり前なので、統計処理した結果の表において、大きい標準誤差なり小さい標準誤差なりを、そのまま「正直に」平均値の横に記載すればよいだけの話です。
以上、ご参考になりましたら。
この回答への補足
こんなに早く、訳の分かっていない私にも分かるようにご丁寧な回答をいただき本当にありがとうございました(全然失礼じゃないです)。それなのにまた勉強不足な疑問で大変恐縮なのですが・・・。
そもそもの疑問が、標準誤差率5%のA県の推定値と30%のB町の推定値から、「A県全体では○○業の工場の割合が35%だが、B町では60%で、25ポイント上回っている」などと結論づけてよいのだろうか?ということでした。
標準誤差率1%の全国結果とA県となら同じように比較してもある程度実態(母集団の平均値?)を反映した結果になると思うのですが、ただの感覚的なものなので、標準誤差率○%以下なら・・みたいな目安はあるのだろうか?と思った次第です。
質問の趣旨が分かりにくくてすみません(この考え方自体間違っていましたらご容赦ください・・・)。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 統計学 生物統計学の質問 7 2022/05/17 13:59
- 統計学 信頼区間についての質問です。 6 2023/06/25 17:34
- 統計学 t検定について教えてください 2 2023/02/23 16:35
- 統計学 以下の問題が分からないので計算式を教えてください ある企業が製造している電球の寿命の母平均と,母標準 3 2023/01/14 00:43
- 統計学 不偏分散を計算するときに標準偏差和をn-1で割りますが、なぜ-1なのでしょうか? 「なぜnでなくn- 5 2022/07/04 14:54
- 統計学 幾何平均回帰でAICを求める方法 3 2023/03/14 15:27
- 統計学 【統計】標本平均、標本標準偏差からt分布グラフ作成方法 9 2022/10/18 23:46
- 統計学 統計学の問題です。よろしくお願いします。 ある部品の重量は正規分布に従うとされており,過去の経験から 1 2023/01/19 03:36
- 統計学 統計学の問題です。教えてください(_ _) 数万人の有権者がいる選挙区で, 無作為に400人の標本を 2 2023/02/03 15:27
- 統計学 統計学を独学で勉強してます。 ページ左上に誤差分散の推定量の指揮があると思いますが(青いペン) 例題 2 2023/02/12 12:34
このQ&Aを見た人はこんなQ&Aも見ています
-
あなたの「必」の書き順を教えてください
ふだん、どういう書き順で「必」を書いていますか? みなさんの色んな書き順を知りたいです。 画像のA~Eを使って教えてください。
-
3分あったら何をしますか?
カップ麺にお湯を入れて、できるまでの3分間で皆さんは何をしていますか?
-
治せない「クセ」を教えてください
なくて七癖という言葉どおり、人によっていろいろなクセがありますよね。 あなたには治せないクセがありますか?
-
集合写真、どこに映る?
あなたが集合写真を撮られるとき、画角のどのあたりにいることが多いですか? 私は振り返ってみると右の端にいることが多い気がします。
-
【選手権お題その2】この漫画の2コマ目を考えてください
サッカーのワンシーンを切り取った1コマ目。果たして2コマ目にはどんな展開になるのか教えてください。
-
実験における誤差範囲の許容範囲の決め方ってどうやればいいんですか? また、一般的には具体的にどこ程度
大学・短大
-
誤差率が1%はおおきいですか?小さいですか? 小さいと言っても良い範囲とかありますか?
物理学
-
相対誤差が小さいと判断する基準がわからないのでどのような値になったら小さいと判断してよいのか教えてほ
大学・短大
-
-
4
誤差について教えてください、、 誤差率は、 (測定値ー真値)/真値 だと思っていますが。 ある先輩か
その他(教育・科学・学問)
-
5
標準偏差
数学
-
6
エクセルの散布図グラフで、横比1:1の図形を作画したい
その他(Microsoft Office)
-
7
相対誤差の求め方と許容範囲
物理学
-
8
等吸収点
化学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】看板の文字を埋めてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・【穴埋めお題】恐竜の新説
- ・我がまちの「給食」自慢を聞かせてっ!
- ・冬の健康法を教えて!
- ・一番好きな「クリスマスソング」は?
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
効果量のマイナス表示に関して
-
調査結果は、標準誤差率が何%...
-
サンプルサイズの大きく違うF検定
-
SPSS McNemar検定
-
最小有意差とは?
-
統計のt検定について
-
統計学的に信頼できるサンプル...
-
T検定とMann-WhitneyのU検定の...
-
平均値の差が大きい場合のF検定
-
統計学のP検定とt検定につい...
-
サンプルサイズが極端に少ない...
-
官能検査の統計処理について
-
t-検定(P<0.05で有意差あり):p...
-
母集団の違う2つの平均値の優...
-
有意差が無いことを証明(危険...
-
平均値、標準偏差、変動係数に...
-
有意差検定の検定方法で困って...
-
スミルノフ・グラブス検定の有...
-
相関係数とp<0.01の早見表
-
有意差について
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
効果量のマイナス表示に関して
-
調査結果は、標準誤差率が何%...
-
p値の計算式
-
統計学のP検定とt検定につい...
-
統計のt検定について
-
サンプルサイズの大きく違うF検定
-
統計学的に信頼できるサンプル...
-
Mann-WhitneyのU検定をspss統計...
-
最小有意差とは?
-
英語論文に出てくる「independe...
-
スミルノフ・グラブス検定の有...
-
t検定での「対応のある・ない」...
-
t検定・Χ二乗検定について t...
-
有意差が無いことを証明(危険...
-
データの分析方法
-
有意差について
-
2群間平均の差の検定 差が“な...
-
検定で出てしまった有意差を認...
-
同等性の検定について
-
SPSS McNemar検定
おすすめ情報