個人事業主の方必見!確定申告のお悩み解決

複素積分を習うなかでフレネル積分の証明があるのですが、
なぜ積分経路を8分円(角度π/4の扇形)で考えるのでしょうか?
f(z)=e^(-iz^2)として積分するからなんでしょうか?
(どちみち理由は分からないのですが;)

また、複素積分をするにあたり図を描いたほうがいいと言われますが、
はっきり言ってどう考えたらいいのか分かりません。
コツがあればついでに教えていただけたらと思います。

分かる方、よろしくお願いいたします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

Frenel じゃなくて Fresnel ですね.



具体的にどういう積分をどういう方針で求めたいのかを書かないと,
回答者にはなかなか意味が伝わりません.

察するに,
(1)  ∫{0→∞} cos(x^2) dx
     = ∫{0→∞} sin(x^2) dx
     = (1/2)√(π/2)
を知るのに
(2)  f(z) = e^(-iz^2)
を質問の径路で複素積分して求めよ,ということでしょうか.
質問の径路は
原点(0,0)→A(R,0)→半円に沿ってB(R,R)→直線で原点に戻る
で,R→∞と考えるのですね.
最初の直線を径路 C1,次の円弧を C2,最後の直線を C3 としておきます.

この径路でやるなら,(2)の f(z) ではうまく行きません.
(3)  g(z) = e^(iz^2)

(4)  h(z) = e^(-z^2)
を使わないとダメです.

留数定理はもちろん知っているものとして,
基本的考え方は以下の通りです.
g(z) を使うことにしましょう.
論理構成は以下の(a)~(d)です.

(a) g(z) は複素全平面で正則ですから径路内に極はなく,
径路を一周した積分はゼロです.

(b) 径路 C1 に沿った積分は
(5)  e^(iz^2) = cos(x^2) + i sin(x^2)
を考えれば,実数部と虚数部がそれぞれ(1)の積分を与えます(R→∞として).

(c) 径路 C2 に沿った積分は R→∞ でゼロになってくれる.

(d) 径路 C3 の沿った積分はうまいこと既知の積分に帰着する.

(e) (a)~(d)を組み合わせれば直ちに(1)がわかる.

(a)(b)はもう説明不要でしょう.
(c)は
(6)  z = R e^(iθ) = R(cosθ + i sinθ)
とおけば,z^2 = R^2 e^(2iθ), dz = izdθ ですから
(7)  g(z) = exp{iR cos2θ - R sin2θ}
になります.
今は 0≦θ≦π/4 ですから,θ=0 は除いて sin2θ>0 で,
R→∞としたときに g(z) は指数関数的にゼロに近づきます.
したがって,径路 C2 に沿った積分はゼロになります.
(7)の { } の - R sin2θの負符号が重要で,
ここが正符号だと発散してしまいます.
つまり,f(z) だとうまく行かない!

(d)に沿っては z = x + xi ですから(積分範囲が R→0 であることに注意),
(8)  g(z) = e^{i(x+xi)^2} = e^(-2x^2)
(9)  dz = (1+i) dx
となり,√2 x = t とでも置けば有名な Gauss 積分
(10)  ∫{0→∞} e^(-t^2) dt
に帰着します.
ここでも,f(z) だと e^(2x^2) になってしまい発散してしまいます.

あとの細かい計算はお任せします.

> 複素積分をするにあたり図を描いたほうがいいと言われますが、
頭の中ですべてできれば図を描く必要もありませんが,
初めのうちはそうも行かないでしょう.
わずかな手間を惜しんで理解できなかったり誤解したりするのはつまらないことです.

> コツがあればついでに教えていただけたらと思います。
例題をさらっと読み流すのではなく,
上のようなことを考えながら手を動かし頭を働かすより仕方がないでしょう.
例えば,h(z) を使ったらどうなるのか,π/4 でなくて π/6 にしたらどうなるのか,
第1象限の8分円でなくて,他の象限の8分円だったら g(z) をどう修正すればうまくいくか,
などやってみると勉強になります.

この種の問題では,考えるべき複素関数と径路が与えられてないと格段に難しくなります.
    • good
    • 0
この回答へのお礼

いろいろとご指摘と回答ありがとうございました。
私が計算した方法ではf(z) = e^(-z^2)でした;
質問ミスです;

計算方法などは分かりますが、経路がなぜ8分円なんだろうとか、
他の複素積分とかでもなんで半円だったり、円だったりしてるの?
って思ってましたが、参考書等のは最も一般的というだけなんですね。
時間があるときにでも違うf(z)とか経路でいろいろ計算してみたいと思います。

ありがとうございました!

お礼日時:2008/07/23 18:17

なんでって、その経路を考えれば計算できるからでしょ。

    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q単位法線ベクトルの問題なんですが。。。

曲面 4x^2y+z^3 = 4 上の点P(1, -1, 2)における単位法線ベクトルnを求めよ.

という問題です.

他の質問を見てf = (x,y,z) = 4x^2y+z^3-4
とするのはわかったのですがgradfがわからないです。。。

Aベストアンサー

未消化のgrad fを使わなくても以下のように出来ます。
いずれにしてもただ丸写しするのではなく教科書や講義ノートや参考書など
を復習して基礎的なことを勉強して、理解するだけの自助努力が大切です。

f(x,y,z)=4(x^2)y+z^3-4=0

全微分して
 8xydx+4(x^2)dy+3(z^2)dz=0

点P(1,-1,2)の座標を代入
 -8dx+4dy+12dz=0
 4(-2,1,3)・(dx,dy,dz)=0
法線ベクトル:±(-2,1,3)
 |(-2,1,3)|=√(4+1+9)=√14
単位法線ベクトルn=±(-2,1,3)/√14

Qブリュアンゾーンの物理的な意味

 ブリュアンゾーンは、逆格子空間のウィグナーサイツセルとして定義されますが、物理的にはどんな意味があるのでしょうか。いまいち具体的なイメージがわきません。キッテルを使って勉強しているのですが、回りくどくてよくわかりません。
 さらに、フォノンの波数ベクトルが-π<Ka<-πに限定されると、なぜそこがブリュアンゾーンに対応しているのでしょうか。
 数式はキッテルに載っているので、できるだけ物理的な意味やイメージをお教えいただければと思います。よろしくお願いします。

Aベストアンサー

○ブリユアンゾーンがなぜ波数なのか?

#1で述べた通り、そもそも逆格子空間とは、波数空間なのです。ですから、その一部であるブリユアンゾーンも当然波数ですよね。

○なぜウィグナーサイツセルがブリルアンゾーンになるのか?

例えば、いきなり三次元で考えると難しいので、二次元(x-y平面)の正方格子で考えます。基本格子ベクトルa1,a2から実際に基本逆格子ベクトルb1,b2を計算してみてください。y軸方向のベクトルと、x軸方向のベクトルになったと思います。
基本逆格子ベクトルb1とb2を線形結合をとることにより、一般の逆格子ベクトルGが得られますが、ゼロベクトルを別とすれば、逆格子ベクトルGの中で大きさが最も小さいのは、b1,b2含めて全部で4つですよね。この4つのベクトルを原点から書いてみて下さい。
で、結論から言いますと、これらのベクトルの垂直二等分線で囲まれた領域(四角形)がブリユアンゾーンとなるわけですが、それは何故かを考えます。
いま、
(1)このような四角形を逆格子ベクトルだけ移動させて張り合わせていくと、全平面を埋め尽くすことができますよね。また、
(2)四角形の内側の点から逆格子ベクトルだけ離れた点はすべて四角形の外側にあることになります。(つまり、ブロッホ波の波数kの周期的な任意性による重複がこの四角形の中にないってこと。)
ブロッホ波の波数kの任意性の周期は基本逆格子ベクトルですから・・・・もうこの四角形の内部の点だけを考慮すればいいことになりますよね!だから、こうやって定義された四角形はブリユアンゾーンとなるわけです。

この考え方が他の構造にも適用できます。

○ブリユアンゾーンがなぜ波数なのか?

#1で述べた通り、そもそも逆格子空間とは、波数空間なのです。ですから、その一部であるブリユアンゾーンも当然波数ですよね。

○なぜウィグナーサイツセルがブリルアンゾーンになるのか?

例えば、いきなり三次元で考えると難しいので、二次元(x-y平面)の正方格子で考えます。基本格子ベクトルa1,a2から実際に基本逆格子ベクトルb1,b2を計算してみてください。y軸方向のベクトルと、x軸方向のベクトルになったと思います。
基本逆格子ベクトルb1とb2を線形...続きを読む

Q音響モード・光学モード

フォノンの光学モード、音響モードの図の見方がわかりません。わかりやすく説明できる方がいらっしゃったらお願いします。

ここ↓
http://cl.rikkyo.ne.jp/cl/2004/internet/kouki/rigaku/hirayama/041222/12_22.html
のページの下から1/4あたりにある図みたいなのです。

Aベストアンサー

わかりやすい説明かどうかわかりませんが、
おっしゃているのは、フォノンの振動数(またはエネルギー)を縦軸、波数を横軸にとった図のことでしょうか?
こういう図を(フォノンの)分散関係と呼びます。

たぶん高校で波(音波)において、
(波の振動数ν)=(波の速度c)/(波長λ)という関係(以下、式1と呼ぶ)を習ったと思いますが、それを拡張したものです。これを波数kを使って書くと
ω=2πν=ckです。これは分散関係の図で直線で与えられますが、フォノンの分散関係は直線にはなっていません。なぜでしょうか。
 固体の振動を例にとると、式1はλを小さくしていくと問題が発生します。つまり式1がどんなに小さな波長にでも成立するとすると問題が発生します。波長が0.01nmになったらどうなります。原子の間隔は0.1nmのオーダーなので、それよりも狭い領域に波の振動が含まれるとはどういうことでしょう。そういう波はありえないというか意味がないのです。
つまり式1は波長が極端に短いところでは変更を受けるわけです。

音響モードと光学モードとは、分散関係でkを小さくしていった場合、振動数がゼロになるのが音響モードで、有限の値をとるのが光学モードです。

結晶の単位胞に原子が1個しかない結晶では、音響モードしかありません。光学モードが現れるためには、単位胞に2個以上の原子が含まれる必要があります。

それではなぜ「音響」モードと呼ぶのでしょう。
音響モードは実は充分kが小さい領域ではω=ckという線形な関係に漸近します。つまり式1です。式1が表すのは音波だったため、「音響」モードと呼ばれます。

それではなぜ「光学」モードと呼ぶのでしょう。単位胞に原子が2つ含まれる場合はイオン結晶でよく起こり、片方が+、もう片方が-に帯電しています。
それが質問者の示したwebの図にもあるように互い違いに振動するモードが光学モードにあたり、+と-の電荷が互い違いに振動すると電気分極が振動し、光(格子振動の場合は赤外光)と相互作用します。

光学モードをもつ結晶に赤外光を当てると、光学モードの振動数に相当する赤外光が吸収されます。「光」で観測できるから「光学」モードです。

フォノンの光学モードと音響モードの話は、どんな固体物理の教科書にも載っていると思いますので、以上の説明の手がかりに一度じっくり読んでみられたらいかがでしょうか?

わかりやすい説明かどうかわかりませんが、
おっしゃているのは、フォノンの振動数(またはエネルギー)を縦軸、波数を横軸にとった図のことでしょうか?
こういう図を(フォノンの)分散関係と呼びます。

たぶん高校で波(音波)において、
(波の振動数ν)=(波の速度c)/(波長λ)という関係(以下、式1と呼ぶ)を習ったと思いますが、それを拡張したものです。これを波数kを使って書くと
ω=2πν=ckです。これは分散関係の図で直線で与えられますが、フォノンの分散関係は直線にはなっていませ...続きを読む

Q行列の正定・半正定・負定

行列の正定・半正定・負定について自分なりに調べてみたのですが、
イマイチ良くわかりません。。。
どなたか上手く説明していただけないでしょうか?
過去の質問の回答に

>cを列ベクトル、Aを行列とする。
>(cの転置)Ac>0
>となればAは正定値といいます。
>Aの固有値が全て正であることとも同値です。

とあったのですが、このcの列ベクトルというのは
任意なのでしょうか?
また、半正定は固有値に+と-が交じっていて、
負定は固有値が-のみなのですか?

どなたかお願いしますorz

Aベストアンサー

まず、行列の正定・半正定・負定値性を考えるときは、
行列は対称行列であることを仮定しています。
なので、正確な定義は、

定義 n次正方 "対称" 行列 A が正定値行列であるとは、
『ゼロベクトルではない任意の』n次元(列)ベクトル c に対して、
(cの転置)Ac>0
となることである。

です。

対称行列Aが正定値なら、その固有値はすべて正です。
(cとして固有ベクトルをとってみればよいでしょう。)
逆に、対称行列Aの固有値がすべて正なら、Aは正定値行列です。

ただし、対称行列ではないAの固有値がすべて正だからといって、
(cの転置)Ac>0とは限りません。
例えば、
A =
[ 1 4 ]
[ 0 1 ]
とすると、Aは対称行列ではなく、固有値は1です。
しかし、
(cの転置) = [ 1, -2]
とすると、
(cの転置)Ac = -3 < 0
となってしまいます。(実際に計算して確かめてください。)
なので、行列Aが対称行列であるという条件はとても重要です。

また、半正定値の定義は、上の定義で
『ゼロベクトルではない任意の』 --> 『任意の』
と書き直したものです。
このとき、半正定値行列の固有値はすべて0以上です。(つまり0も許します。)
逆に、対称行列の固有値がすべて0以上なら、その行列は半正定値です。

さらに、負定値の定義は、『ゼロではない任意の』ベクトルcに対して
(cの転置)Ac<0
となることです。
固有値についてはもうわかりますね。

まず、行列の正定・半正定・負定値性を考えるときは、
行列は対称行列であることを仮定しています。
なので、正確な定義は、

定義 n次正方 "対称" 行列 A が正定値行列であるとは、
『ゼロベクトルではない任意の』n次元(列)ベクトル c に対して、
(cの転置)Ac>0
となることである。

です。

対称行列Aが正定値なら、その固有値はすべて正です。
(cとして固有ベクトルをとってみればよいでしょう。)
逆に、対称行列Aの固有値がすべて正なら、Aは正定値行列です。

ただし、対称行列...続きを読む

Qexp(1/z)の原点のまわりでローラン展開について質問です。

exp(1/z)の原点のまわりでローラン展開について質問です。
私の見た書籍やwebページでは、exp(z)のマクローリン展開に、zの代わりに1/zを入れて
exp(1/z)=1+1/1!z+1/2!z^2+…
と展開できるという説明がされているんですが、このことで腑に落ちないところがあります。あくまでexp(1/z)のz=0での展開を考えているわけですから、例えば1/z=uとかおいて考えるのならば、z=0に対応するのはu=∞のはずです。だからexp(u)の展開に帰着させたいなら無限遠点の周りの展開を考えなければならない、ということにはならないのでしょうか?疑問に思っているのはここです。
しかしテイラー展開は円板状の領域内で使えるものであって、無限遠点まわりで、というわけにはいきませんよね。それで1/z=uとおき直してみるという作戦は結局上手くいかないのかなぁ、などと悩んでしまって…
どなたかお助けください。

Aベストアンサー

よい点に気づかれたと思います。
ローラン展開といっても、極を中心とする展開ならば、
テイラー展開とあまり変わりがありませんが、
真性特異点を中心とするものは難しいことが多く、
関数によっては、どうやって展開したらよいか
解らないこともあります。

今回の問題で exp u のマクローリン展開に
u = 1/z を代入してよい理由は、
exp のマクローリン展開が収束半径 ∞ を持つからで、
そのために、z がどれだけ 0 に近づいても
exp u の級数表示が意味を持っているからです。

Qe^iθの大きさ

今日読んだ本に

絶対値(e^iθ) = √cosθ^2+sinθ^2 = 1

と書いてありました。
オイラーの公式はe^iθ=cosθ+i sinθですよね

絶対値(e^iθ) =√e^i2θ=cos2θ+ i sin2θ=1

とド・モアブルの定理を使った式でもできているんですか?
上の式も下の式もよくわかりません
どなたか両方詳しく教えて下さい。

Aベストアンサー

絶対値(e^iθ) =√e^i2θ=cos2θ+ i sin2θ=1

この部分は、実数rに対しては、|r|=√(r^2)となるのですが、
複素数cのたいしては、
|c|=√(c*(cの共役複素数))
となります。
(e^iθ)の共役複素数は(e^-iθ)ですから、

絶対値(e^iθ) =√((e^iθ)*(e^-iθ))=√(e^0)=√1=1
となります。

実数と複素数では絶対値の計算が少し異なります。

Qエクセル、散布図でデータの一部のみの近似直線を書きたい

(1、5)、(2,8)、(3、16)、(4、25)、(5、37)というグラフをかきました。
ここでグラフのプロットは全てのデータについて表示されたままで、(3、16)、(4、25)、(5、37)だけについての近似直線を描き、式やR2値を表す方法は無いものでしょうか。
(1、5)、(2,8)というデータを消せば目的の式は得られるのですが、(1、5)、(2,8)というプロットをグラフに残したままにしたいのです。
どうぞよい知恵をお貸し下さい。

Aベストアンサー

1系列の一部のデータ範囲を対象に近似曲線を引くことは出来ないように思えます。便宜的な方法として以下が考えられます。お試しください。

■グラフの一部に近似曲線を追加する

全てのデータ範囲を選択する
|グラフウィザード 2/4 「グラフの元データ」|系列タブ|
系列1
 すでに全てのデータ範囲が対象となっている
系列2
 |追加|
 「Xの値」のボタンを押して後半のX値のセル範囲を選択する
 「Yの値」のボタンを押して後半のY値のセル範囲を選択する
グラフが作成される
全てのデータ範囲(系列1)と後半のデータ範囲(系列2)は重なっている
系列2へ近似曲線を追加する
 グラフ上、後半のデータ範囲の1要素を右クリック
 |近似曲線の追加|
 パターン・種類・オプションを指定する

■検討事項

・凡例・マーカー
無指定で系列に「系列1」・「系列2」という名前が付きます。同じ名前にすることは出来るようですが、系列2のみを消すことは出来ないようです。系列名の色を白にして見えなくする、プロットエリアのマーカーも二系列を同色とする、など考えられます。

・近似線
私は近似曲線のオプションに詳しくありませんが、全てのデータ範囲に対する近似線を引いたとして、後半のデータ範囲に対する近似線と重ならない(同形ではない)と思います。

1系列の一部のデータ範囲を対象に近似曲線を引くことは出来ないように思えます。便宜的な方法として以下が考えられます。お試しください。

■グラフの一部に近似曲線を追加する

全てのデータ範囲を選択する
|グラフウィザード 2/4 「グラフの元データ」|系列タブ|
系列1
 すでに全てのデータ範囲が対象となっている
系列2
 |追加|
 「Xの値」のボタンを押して後半のX値のセル範囲を選択する
 「Yの値」のボタンを押して後半のY値のセル範囲を選択する
グラフが作成される
全てのデ...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qエクセル近似曲線(範囲指定)

10個のプロット点によって作られているエクセル曲線の、右端3つのみの直線近似曲線が引きたいのですが何かいい方法はないでしょうか?

右端3つのみの近似曲線の関数(y=○x+▽)も知りたいです。

「近似曲線の追加」→「直線近似」でやると
すべてのプロット点に対する近似直線しかかけません。

宿題の期限が近く、困っています。
どなたかお助けください。よろしくお願いします。

Aベストアンサー

メニューバー→「グラフ」→「元のデータ」→「系列」タブで、近似曲線を引きたい右端3つのデータで、新たに系列を追加したらどうでしょうか?

で、その系列で近似曲線を引いてやればいいと思います。

ちなみに近似曲線の関数は、近似曲線を選択して右クリックし、「近似曲線の書式設定」を選びます。
「オプション」タブの中に、「グラフに数式を表示する」というのがありますから、ここにチェックを入れて、OKすれば、近似曲線の近辺にY=AX+Bの式が現れます。

Q固有値と固有ベクトル・重解を解に持つ場合の解法

以前質問させていただいたのですが、教科書に固有値が重解の場合の固有ベクトルを求める解法が省かれていて理解できませんでした。
問題はこんな感じです。
2×2行列式A
A=
|1 -1|
|4 -3|
の固有値と固有ベクトルを求めよ。
(自分の解法)
まず
与式=
|1-t -1|
|4 -3-t|
サラスの方法で展開し、
(1-t)(-3-t) - (-1)・4
=t^2 + 2t 1
=(t+1)^2
となるので固有値をλ1,λ2として、
λ1=-1,λ2=-1
(ここまではできたのですが、解が重解になってしまいました。固有ベクトルを求める方法ができなくてこまってます。)

固有値λ1=λ2=-1より、求めるベクトルをx=t[x1,x2]とすると
A=
|1-(-1) -1 |
|4 -3-(-1)|
=
|2 -1|
|4 -2|
よって
2x1-x2 = 0
4x1-2x2 = 0
この二つは同一方程式より、x1 = 2x2
任意の定数αをもちいてx1 = αとすれば、
x = αt[1,2]

しかし、答えには、
x1 = αt[1,2]
x2 = βt[1,2] + αt[0,-1]

とありました。なぜなでしょう?
参考にしたページなんかを載せてくれるとありがたいです。

ちなみにこんな問題もありました。
A=
|0 0 1|
|0 1 0|
|-1 3 2|

これは固有値がすべて1になる場合です。
これも解法がのってませんでした。

以前質問させていただいたのですが、教科書に固有値が重解の場合の固有ベクトルを求める解法が省かれていて理解できませんでした。
問題はこんな感じです。
2×2行列式A
A=
|1 -1|
|4 -3|
の固有値と固有ベクトルを求めよ。
(自分の解法)
まず
与式=
|1-t -1|
|4 -3-t|
サラスの方法で展開し、
(1-t)(-3-t) - (-1)・4
=t^2 + 2t 1
=(t+1)^2
となるので固有値をλ1,λ2として、
λ1=-1,λ2=-1
(ここまではできたのですが、解が重解になってしまいました。固有ベクトルを求める方法ができなくて...続きを読む

Aベストアンサー

重解であろうがどうであろうが,求める方法は同じだから
わざわざ取り上げることはないという話でしょう.

No.1さんと同様,記号の混乱があるので
「参考書」やらが間違ってるのか,質問者の転記ミスなどかは
分かりませんが,
>とありました。なぜなでしょう?
答えを確かめましたか?
本当にその「解答」があってますか?
大学の数学の本なんて結構間違い多いですよ.

ちなみに・・・λが固有値のとき
(A-λI)x = 0 の解空間が固有空間です.
これは線型写像 A-λI のカーネル Ker(A-λI) だから
n次の正方行列を相手にしてる場合は
n=dim(Im(A-λI))+dim(Ker(A-λI))
=rank(A-λI) + dim(Ker(A-λI))
だから
固有空間の次元
= dim(Ker(A-λI))
= n - rank(A-λI)

したがって,
A=
|1 -1|
|4 -3|
のとき,λ=-1とすれば
A-λI= <<<--- 質問者はここを書き間違えている
|1-(-1) -1 |
|4 -3-(-1)|
=
|2 -1|
|4 -2|
だから,rank(A-λI)=1
よって,固有空間は1次元
だから,本質的に(1,2)以外に固有ベクトルはないのです.
(0,-1)が固有ベクトルではないことは容易に確認できます.

A=
|0 0 1|
|0 1 0|
|-1 3 2|
の場合も同様.A-λIのランクを計算すれば2だから
固有空間の次元は1で,計算すれば(1,0,1)を固有ベクトルと
すればよいことが分かります.

重解であろうがどうであろうが,求める方法は同じだから
わざわざ取り上げることはないという話でしょう.

No.1さんと同様,記号の混乱があるので
「参考書」やらが間違ってるのか,質問者の転記ミスなどかは
分かりませんが,
>とありました。なぜなでしょう?
答えを確かめましたか?
本当にその「解答」があってますか?
大学の数学の本なんて結構間違い多いですよ.

ちなみに・・・λが固有値のとき
(A-λI)x = 0 の解空間が固有空間です.
これは線型写像 A-λI のカーネル Ker(A-λI) だから
n...続きを読む


人気Q&Aランキング