No.2ベストアンサー
- 回答日時:
こんばんは。
放物線 = 二次関数のグラフ
図を示すのがわかりやすいと思うので、以下、ご参考に。
http://www.kousotu.com/lect_math/niji_graph.php
http://w3e.kanazawa-it.ac.jp/math/category/kansu …
No.4
- 回答日時:
x=0,±1,±2,±3…
を代入してプロットした点をつないだでみたらどうですか?
x=0から始めるんじゃなく頂点の座標から軸に対して対称にとっていけばいいんですが
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 【 数I 2次関数の対称移動 】 問題 ※写真 疑問 放物線y=2x²+xをy軸に関して対称移動 す 3 2022/07/02 23:28
- 数学 この図の放物線のグラフはy=-x²+4なのですが、どうやったらこの式を立てられるのか教えて下さい! 5 2023/06/07 21:17
- 数学 数学の判別式の質問です。放物線のグラフと共有点を見つけるためのxの線は、何に当てられるのでしょうか? 2 2022/08/17 23:33
- 数学 高校数学の問題です。 aを定数とする。放物線y=x^2+aと関数y=4|x-1|-3のグラフの共有点 3 2022/05/09 08:59
- 数学 数学 x軸に関して対称に移動した放物線の式は x軸に関して対称に移動された放物線の式のyに−をつけて 1 2022/07/14 21:03
- Excel(エクセル) <スプレッドシート>採用進捗 グラフ作成について 3 2022/10/23 15:52
- 数学 写真の参考についてなのですが、 この方程式が重解をもつaの値は0と27と書いてあるのですが、 上図の 3 2022/11/03 08:52
- 数学 放物線y=x^2+a と円x^2+y^2=9について、 連立して、y^2+y-a-9=0 この方程式 12 2023/01/29 00:08
- Excel(エクセル) Excelグラフについて 1 2023/05/12 16:26
- その他(Microsoft Office) 2019エクセル折れ線グラフで、Y軸を3つ作成したいのですがやり方が分かりません。 例 A 1.2. 1 2022/04/27 12:25
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
添付画像の放物線はどんな式で...
-
2:1正楕円とは何ですか?
-
楕円の書き方
-
至急!y=2X^2を変形(平方完成)...
-
楕円の焦点,中心を作図で求め...
-
半楕円とは何ですか?
-
線分と二次曲線の共有点の問題
-
【至急】困ってます! 【1】1、...
-
放物線y=2x² を平行移動した曲...
-
2次関数と似ているグラフについて
-
複素数平面上の座標軸ってどう...
-
楕円の分割
-
日常生活で放物線や双曲線の例...
-
だ円の接線がx軸とy軸にはさ...
-
平方完成
-
媒介変数のグラフの対称性につ...
-
楕円の計算
-
回転放物面 z=x^2+y^2 の面積...
-
放物線z= x^2 + y^2上の点(1,2,...
-
高一数学 二次関数の式で y=a...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
至急!y=2X^2を変形(平方完成)...
-
噴水はなぜ放物線をえがくので...
-
y=ax^2+bx+cのbは何を表してい...
-
楕円の書き方
-
楕円の焦点,中心を作図で求め...
-
2:1正楕円とは何ですか?
-
添付画像の放物線はどんな式で...
-
日常生活で放物線や双曲線の例...
-
tの値が変化するとき、放物線y=...
-
二次関数の良さ
-
双曲線の焦点を求める時はなぜ√...
-
【至急】困ってます! 【1】1、...
-
【 数I 2次関数 】 問題 放物線...
-
放物線y=2x² を平行移動した曲...
-
パラボラアンテナはなぜ放物線...
-
頂点が点(2,6)で、点(1,4)を通...
-
2つの楕円の交点の求め方が分...
-
数学の問題です。 実数x、yが、...
-
数3 放物線 y^2=4pxという式を...
-
数学における「一般に」とは何...
おすすめ情報