ニトロ基がついているので、電子吸引により電子は左側に流れ、右のベンゼン(2)のメタ位にモノニトロ化の配向性が現れると思ったのですが、なぜオルトとパラ位なのか教えてください。


また、左のベンゼン(1)が反応しないのはニトロ基により不活性化されているからでしょうか?

「p-ニトロベンゼンのモノニトロ化配向性」の質問画像

このQ&Aに関連する最新のQ&A

A 回答 (2件)

ニトロ基は電子吸引基なので左のベンゼン環(1)が反応しない、ということでOKです。


ベンゼン環(2)がortho, para配向性になるのは、ニトロフェニル基を弱い電子供与基と考えれば説明できます。
メチル基、フェニル基は電子供与基ですので。ただNo.1の方のように(2)のortho位は立体障害があるためpara配向性が強まりますが、それでもortho付加体が無くなるほどハッキリとは変わらないでしょう。

ここから先は余談ですが、ベンゼン環は一つ一つは平面構造ですが、ビフェニルの場合、2つの環を平面構造にするとorthoの水素原子同士が反発するため少しねじれた構造になっています。このためニトロ基の電子吸引性は(2)のベンゼン環には影響しにくくなります、ということをNo.1の方が仰っています。
(共鳴の極限構造式では平面になりますが、その状態は不安定で寄与が小さいということです)
    • good
    • 0
この回答へのお礼

回答ありがとうございます。NO1の方の解答に詳しい解説をつけて頂きとても分かりやすかったです。助かりました!

お礼日時:2009/05/21 23:02

ビフェニル自身の配向性は4-、4'-です。


今回の場合二つのフェニル基が「同一平面」に並べば、ニトロ基の共役効果が多環を3-配向性にする可能性がありますが、それが見られないと言う事は平面構造の寄与が小さく、また4-ニトロフェニル基の誘起効果も無置換フェニル基と大差無いと言う事になるでしょう。
でも、2-位は立体障害があるので4-位の置換が優先されるはずですが。
    • good
    • 0
この回答へのお礼

回答ありがとうございます。平面構造を考えることは知りませんでした。

お礼日時:2009/05/21 23:01

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q有機化学・モノニトロ化

はじめましてm(_ _)m

大学の試験勉強をしていて、教科書を読んでもどうしてもわからない問題がありました。

どこにニトロ基がつくか教えてください。

問題が有機化学で、口頭で説明するのが難しいので画像を添付させていただきます。

どうかよろしくお願いします。

Aベストアンサー

単純な配向性の問題ですね。
教科書を見れば書いてあるはずですけど。ニトロ化だろうがハロゲン化だろうが同じ配向性です。

1.オルト、パラ配向性活性化置換基なので、オルト位とパラ位がニトロ化されます。現実にはパラの方が多くなりますけど。

2.メタ配向性、不活性化置換基なのでメタ位がニトロ化されます。

3.メタ配向性、不活性化置換基なので、これもメタ位がニトロ化されます。ただし、この反応はかなり進みにくいはずです、そんなことは問われていませんけど。

4.まず、どちらの環が反応するかを考えます。-COORは電子求引性なのでメタ配向性不活性化であるのに対して、RCOO-は電子供与性置換基でオルト、パラ配向性活性化の作用を示します。したがって、RCOO-の形の置換基の付いている右側の環が活性化されるのに対して、左の環は-COORで不活性化されているので、反応が起こりやすいのは右側の環であり、さらにその配向性に従ってオルトかパラがニトロ化されます。どちらか1個と言われればパラが無難かもしれませんけど。


配向性の原因等に関しては、どの教科書にでも書いてあるはずですので、それを読んでください。

単純な配向性の問題ですね。
教科書を見れば書いてあるはずですけど。ニトロ化だろうがハロゲン化だろうが同じ配向性です。

1.オルト、パラ配向性活性化置換基なので、オルト位とパラ位がニトロ化されます。現実にはパラの方が多くなりますけど。

2.メタ配向性、不活性化置換基なのでメタ位がニトロ化されます。

3.メタ配向性、不活性化置換基なので、これもメタ位がニトロ化されます。ただし、この反応はかなり進みにくいはずです、そんなことは問われていませんけど。

4.まず、どちらの環が反応するかを...続きを読む

Qニトロフェノールのオルト体とパラ体

 ニトロフェノールのオルト体とパラ体では沸点が相当違いますよねぇ・・・。ニトロ基の場所の違いがどうして沸点の差に結びつくんでしょう?沸騰するっていうのは蒸気圧=外圧になるってことですよねぇ。となると、パラ体の溶液のほうが外圧が高くなるってことでしょうか?それとも蒸気圧が低くなるのでしょうか?でも、なんでニトロ基の場所が違うだけで、そんなことが起こるノー--?
 教えてくださいっっ!!寝れません!!

Aベストアンサー

原因は分子間水素結合をするか、分子内水素結合(キレーション)をするかです。
パラの場合はニトロ基と水酸基が分子の間で水素結合しますので。沸点は高くなります。見かけの分子量が上がるわけですね。
しかし、オルト体では分子模型を作って頂くと良く分かるのですが、水酸基とニトロ基はとなりあい、分子内の官能基で水素結合を起こします。この現象をキレーションと呼びます。このためオルト、パラと比べて分子単体でいる確率が高くなります。ゆえに他の二つと比べて沸点が下がります。
この現象で同様に溶解度の説明も出来ます。溶解するためには、水和する必要があるわけですが、先の理由によりオルト体では水酸基が水和できない状態になっています。従って溶解度が下がります。パラとメタの差については電子の吸引で説明できます。パラの方がより酸性に傾くわけです。
なお補足ですが、確かパラ体では沸点がなかったのではないでしょうか?その前に分解してしまうはずです。

Qカチオンとアニオンの半径比について

今上記のことを勉強していて、正四面体の中心にあるカチオンと正四面体の各頂点にあるアニオンの半径比を計算で求めようとしていますが分かりません 正四面体の各辺を2とおいて(つまりアニオンの半径が1)やっているのですが・・・   ちなみに答えは、アニオンの半径を1にするとカチオンは0.225らしいです 図形を使う問題なので答えるのは難しいと思いますが宜しくお願いします

Aベストアンサー

立体図形は断面で考えるのが一番ですね。

正四面体A-BCDを考えます。Aが頂点でBCDを底面としましょう。
CDの中点をEとします。
頂点A, B, C, Dを中心としてアニオンが配置されているとします。

面ABEで、イオンごと切断した面を考えましょう。
この面(AE=BEの2等辺三角形)内にはまず、
点Aを中心とする半径1のアニオンの断面・・・切断面では円になりますが・・・があります。
同じく点Bを中心として、半径1のアニオンがあります。

題意のカチオンの中心Oは面ABE内に位置するはずですが、
(1)カチオンを表す円は上記の二つの円と接している
(2)頂点Aから辺BEにおろした垂線を考えると、Oはその線上にある(対称性から)
の2つでカチオン(の断面)を表す円は一意に決まります。

以下はOを定めるための数学テクニック上のお話です。
(2)の垂線の足をHとすると、Hは底面BCDの重心になります。
また頂点Bから面ACDにおろした垂線の足をH'とすると、同様にH'は△ACDの重心で、
かつOは線分BH'上に存在します。

この先は力づくでもなんでも解けるのですが、中学校の数学まででやるとすると、
(1)面ABE内で、Hを通りBH'に平行な補助線を引く。この補助線がAEと交わる点をFとおく。
(2)三角形BH'Eと三角形HFEの相似を考え、H'F:FE =2:1と求められる。
(3)これより、AO:OH=3:1と求まる。

AHの長さですが、正四面体の一辺の長さを2とするならピタゴラスの定理より2√6/3と求められます。
AOの長さはその3/4ですから √6/2 です。
これから、Aを中心とするアニオンの半径1を引き算すればよいので
(2.44949..../2)-1=0.22474...

と求まります。
これでいかがでしょう?

立体図形は断面で考えるのが一番ですね。

正四面体A-BCDを考えます。Aが頂点でBCDを底面としましょう。
CDの中点をEとします。
頂点A, B, C, Dを中心としてアニオンが配置されているとします。

面ABEで、イオンごと切断した面を考えましょう。
この面(AE=BEの2等辺三角形)内にはまず、
点Aを中心とする半径1のアニオンの断面・・・切断面では円になりますが・・・があります。
同じく点Bを中心として、半径1のアニオンがあります。

題意のカチオンの中心Oは面ABE内に位置するはずですが、
(1)カチ...続きを読む

Q正四面体のイオン半径比

四配位の、つまり正四面体のイオン半径比ってどう考えて求めるんですか?
考え方が思い浮かばないんですが、どなたか知ってる人いますか?

Aベストアンサー

ちょっと前に同じ質問をしました。参考URLを見てください。よく分かると思います。ちなみにカチオンを陽イオン、アニオンを陰イオンと読み替えてください

参考URL:http://oshiete1.goo.ne.jp/kotaeru.php3?q=66585

Qニトロフェノールの酸性度のちがい

p-ニトロフェノールと、m-ニトロフェノールの酸性度のちがいについての根拠がわかる方いたら教えてください!!
pとoの差に関しては、oは分子内水素結合をするから、pよりも安定で水素が引き抜かれにくい。。。ということは教科書であったのですが、
mに関する記述は見つけられませんでした。

Aベストアンサー

H^+ が解離したフェノキシドを考えます.
ヒドロキシ基の O 上に負電荷があるんですが, これは共鳴によってベンゼン環に移ることができます. このとき, 負電荷が移るのは (ヒドロキシ基からみて) 2位と 4位, つまり o- と p- の位置になります.
従って, o-ニトロフェノールと p-ニトロフェノールではニトロ基の O が負電荷を持つような共鳴構造を考えることができますが, m-ニトロフェノールではそのような構造を書くことができません. 従って, m- は o- や p- より酸性度が小さくなります.

Qα水素について

カルボニル基の隣の炭素に結合している水素はα水素と呼ばれ酸性を帯びますが、それはなぜですか?その理由を簡単でいいので知りたいです。

Aベストアンサー

 kumanoyu さんがお書きの様に「有機化学」の教科書には必ず載っています。カルボニル基の化学が出てくる最初の辺りをご覧になってみて下さい。

 一般に,酸性の程度を考える場合には,2つの事を考えます。1つは,問題にしているHが+性を帯びているかどうか。+性を帯びていれば,当然,H+になりやすいですね。これには,X-H結合の電子がX側に引き寄せられているかどうかを考えます。

 2つ目は,Hが離れてできるアニオンが安定かどうかです。当然,安定なアニオンができる程H+が離れやすく,酸性度は高くなります。

 今の場合,カルボニルの電子吸引性によってC-H結合の電子が引っ張られ,Hは+性を帯びて離れやすくなっています。また,できるアニオンはカルボニルとの共鳴によって安定化されます。

 これが,カルボニルのα水素が酸性を帯びる理由です。下のペ-ジの「教養有機化学 4. ケト-エノ-ル互変異性」とその先にある「α水素の酸性度とエノラ-とアニオン」をご覧下さい。

参考URL:http://www.geocities.com/yoshihitoshigihara/ch_univ.htm

 kumanoyu さんがお書きの様に「有機化学」の教科書には必ず載っています。カルボニル基の化学が出てくる最初の辺りをご覧になってみて下さい。

 一般に,酸性の程度を考える場合には,2つの事を考えます。1つは,問題にしているHが+性を帯びているかどうか。+性を帯びていれば,当然,H+になりやすいですね。これには,X-H結合の電子がX側に引き寄せられているかどうかを考えます。

 2つ目は,Hが離れてできるアニオンが安定かどうかです。当然,安定なアニオンができる程H+が離れやすく...続きを読む

QSn1反応とSn2反応の違い

Sn1反応およびSn2反応になる条件について調べています。調べたところ両者には以下のような条件の違いがありました。

*Sn1反応*
[中間体]・・・・・3級>2級>1級>メチル
[反応条件]・・・・中性~酸性
[試薬の求核性]・・重要でない

*Sn2反応*
[中間体]・・・・・メチル>1級>2級>3級
[反応条件]・・・・中性~塩基性
[試薬の求核性]・・重要

中間体による違いは、カルボカチオンの超共役効果や立体障害に依存するのだと思います。しかし反応条件や試薬の求核性がどのようにSn1反応とSn2反応に関係するのかが分かりません。例えば、「なぜSn1反応は中性~酸性条件で進行するのか」といったようなことです。どなたか教えてください。

Aベストアンサー

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,どちらの反応の律速段階の反応速度が速いかで決ります。律速段階の反応速度が速い方の機構を通って反応が進行するわけです。

 さて,Sn1 反応の律速段階は御存知の様にカルボカチオンが生じる段階です。つまり,カルボカチオンができ易い程 Sn1 反応は速くなります。一方,Sn2 反応では反応中心の炭素が5つの結合を持った状態が遷移状態ですので,この状態ができ易いもの程反応が速くなります。

 まず,お書きの『中間体』についてです。カルボカチオンの安定性が「3級>2級>1級>メチル」の順であるのは御存知ですよね。これは付いているアルキル基の電子供与性効果と超共役による安定化がこの順で大きいからです。逆にこの順で立体障害が大きくなり,求核剤の接近は困難になります。つまり,「3級>2級>1級>メチル」の順で Sn1 反応の速度は速くなり,Sn2 反応の速度は遅くなります。結果,反応機構が Sn1 → Sn2 にシフトします。

 次に,『試薬の求核性』です。上記した様に Sn1 反応の律速段階はカルボカチオンができる段階であり,求核試薬はこの段階には関与しません。そのため,試薬の求核性は Sn1 反応にはあまり影響しません(重要でない)。一方,Sn2 反応では遷移状態の形成に求核試薬が関与しますので,遷移状態が出来やすい(試薬の求核性が高い)程反応は速くなります(試薬の求核性が重要)。結果,試薬の求核性が高い程 Sn2 反応で進行しやすくなります。

 最後に問題の『反応条件』です。何度も繰り返しになりますが,Sn1 反応の律速段階はカルボカチオンが出来る段階です。この過程では脱離基が抜けてカルボカチオンが生じると同時に,脱離基はアニオンになります。結果,このアニオンを安定化する条件(つまり,酸性もしくは中性)の方が Sn1 反応が進みやすくなります。逆に Sn2 反応は,求核試薬が剥出しの状態になる塩基性の方が攻撃性が高まり反応が速くなります(塩基でもある求核試薬を酸性条件下に置くと酸と反応してしまいます)。結果,塩基性から酸性になるに連れて,反応機構は Sn2 → Sn1 にシフトします。

 ざっとこんな感じですが,要点だけ纏めると,「カルボカチオンができ易い,脱離基が脱離し易い」条件は Sn1 に有利ですし,「アニオンができ易い,求核試薬が攻撃し易い」条件は Sn2 反応に有利です。そして,「求核置換反応の機構は Sn1 か Sn2 のどちらか」ですので,反応が起こらない場合は別にして,Sn1 反応が起こり難くなると Sn2 機構で,Sn2 反応が起こり難くなると Sn1 機構で反応が起こります。

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,...続きを読む

Q分配比と分配係数の違い

分配比Dと分配係数Kdを求め方の違いってなんですか?式を見るとどちらも有機相の濃度/水相の濃度のような感じがするのですがどこが違うのでしょうか?

Aベストアンサー

質問文でも言われている通り、どちらの定数も有機相中の濃度/水相中の濃度で表されます。しかし、これら二つの関係式は注目しているものが、ある液相におけるただ一つの化学種か全化学種かの違いがあります。
分配比Dは特定の化合物の全濃度の比率であって、分配係数Kdは一つの化学種の濃度比です。
 例えば、ある弱酸HAを考えている時、水相中ではプロトンが解離してHAとA-の2種類が存在ています。したがって水相中でのHAの全濃度は[酸]aq=[HA]aq+[A-]aqになります。また有機相では酸は解離しませんので有機相中での酸濃度は[酸]org=[HA]org
 したがって分配比はこれらの濃度比だから次のようになります。
  D=[酸]org/[酸]aq=[HA]org/[HA]aq+[A-]aq
 一方、分配係数の方は液相中での一つの化学種に注目していますので、例えばHAに注目するとその分派池数は
  Kd=[HA]org/[HA]aqとなります。
 まとめると、分配比は液相における全化学種の濃度の和の比であり、一方分配係数は液相中の一種類の化学種の比となります。このことからある液相で一種類の形態でしか存在しない化合物においては分配係数と分配比は同じ値になります。

質問文でも言われている通り、どちらの定数も有機相中の濃度/水相中の濃度で表されます。しかし、これら二つの関係式は注目しているものが、ある液相におけるただ一つの化学種か全化学種かの違いがあります。
分配比Dは特定の化合物の全濃度の比率であって、分配係数Kdは一つの化学種の濃度比です。
 例えば、ある弱酸HAを考えている時、水相中ではプロトンが解離してHAとA-の2種類が存在ています。したがって水相中でのHAの全濃度は[酸]aq=[HA]aq+[A-]aqになります。また有機相では酸は解離しませんので有機相...続きを読む

Qカルボカチオンの安定性

一級カルボカチオンは、二級、三級に比べて不安定ですが、一級でも安定なカルボカチオンがあるそうなんです、それはどういったものなんでしょうか?
なぜ安定になるのか説明もしてくださると大変うれしいです。

Aベストアンサー

おそらくアリルカチオンではないでしょうか。

CH2=CH-CH2-というアリル基を持つアリルカチオンCH2=CH-+CH2は、+CH2-CH=CH2との共鳴があるので安定です。これらの原子は全て同一平面上にあります。これら3つの炭素原子は全てsp2混成していて、分子平面に対し垂直なp軌道を持っています(普通のアルケンと同じような軌道です)。カルボカチオンの空いたp軌道が二重結合のπ軌道と重なることで安定します。

アリルカチオンは簡単な第1級アルキルカチオンよりも安定で、その相対的安定性は第2級アルキルカチオンに匹敵するそうです。

ちなみにアリルアニオン、アリルラジカルも同様の理由で安定です。

Qグリニャール反応で・・・

グリニャール試薬と二酸化炭素を反応させるとカルボン酸ができるとありますが・・・

まずR-が二酸化炭素のCを攻撃してカルボン酸ができるのはわかりますが、そのカルボン酸のCにもR-が攻撃してジオールができると思うんですがどうも違うもたいです。
このgemのジオールができない理由を教えてください。



R-(マイナス)

Aベストアンサー

たとえば、エステルはグリニャール試薬と反応してケトンやアルコールを生成します。
しかしながら、グリニャール試薬と二酸化炭素の反応で生成するのは、カルボン酸の塩(R-COOMgX:Xはハロゲン)です。
このとき、酸素原子はエステルなどの場合と異なり、アニオン(R-COO-)の形になっているために、大きな負電荷を有しています。そのため、その負電荷の影響で、COOの炭素原子上の電子密度が上昇し、求核剤であるグリニャール試薬の攻撃を受けにくくなります。
また、グリニャール反応で生じるR-COOMgXの溶解度が低いこともしばしば起こり、これが次の反応が起こりにくくなる原因の1つになります。
これらの理由によって、2個目のグリニャール試薬による攻撃が起こりにくいと考えられます。

ちなみに、通常、gemジオールは不安定であり、カルボニル化合物へと異性化します。したがって、仮に2個目のグリニャール試薬が反応することがったとしても、gemジオールではなくケトンが生じることになります。


人気Q&Aランキング