ここから質問投稿すると、最大4000ポイント当たる!!!! >>

放射線照射後、細胞の数が1週目、2週目、3…とだんだん減っていきました。
この棒グラフ(縦軸:細胞数、横軸:時間)に有意差を示したいのですが(エラーバー?)どうすればいいかさっぱりわかりません。

教えてください!

すみません、おおざっぱで。。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

>この棒グラフ(縦軸:細胞数、横軸:時間)


横軸が時間なら、連続データなので、折れ線グラフでは。一般的には、棒グラフは誤りですが、連続データではないのですか、それとも何か意図がありますか。

>(エラーバー?)どうすればいいか
棒グラフの上部に、+1σなどで表し、グラフの脚注に、data indidate mean+S.D.などと表します。外国の人は、SDでなく、SEが多いようです。
 生物系の専門雑誌ではありふれたグラフですから、チェックして下さい。
それとも、エクセルなどでの表し方でしょうか。その場合は、ソフト、バージョンなどを書いて下さい。

 周囲の指導者などに訊け、というのが一般論ですが。
    • good
    • 0

棒グラフで有意さを表すのは異常です。


エラーバーの付いた分布グラフあるいは折れ線グラフが普通ではないでしょうか?
無理にやろうとすると「株価」グラフの出来高で中央値を、高値で上ぶれを、安値で下ぶれを、初め値、終値は中央値に一致させればなんと科出来ます。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qエクセルについて

エクセルで棒グラフを作成した時に、有意差があるように表示するにはどのようにしたら良いのでしょうか?教えて下さい。

Aベストアンサー

ANo.2です。

> 2つの棒の上に「 みたいなのをつけて、アスタリスクを表示し、99%水準で有意であるということを表現したいのですが、その方法がわかりません。

棒の上にテキストボックスを挿入し、ご希望の記号を入力する方法ではダメでしょうか?

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Qエクセルのグラフ;各々のポイントに異なった標準偏差の入れ方

上手く説明できないのですが、、、。教えて下さい。

エクセルの折れ線グラフに標準偏差の値を入れ込む方法は判るのですが、一つの値を入れ込むと、すべてのポイントに反映されてしまいます。各ポイントで、違った値の標準偏差を入れたいのですが、どうすればよいでしょうか?
宜しくお願いいたします。

Aベストアンサー

先ず、例えば、A列に折れ線グラフ用の数値を入れます。B列に、標準偏差とする数値をA列の数値の横に入れます。
次に、折れ線グラフを設定します。
さらに、「データ系列の書式設定」 → 「Y誤差範囲」 → 「誤差範囲」 → 「指定」でB列を設定します。
これで、各ポイントに違った値の標準偏差を入れることが可能になります。
なお、これは各ポイントと標準偏差の値だけでグラフを作成する一例です。

Q相関係数についてくるP値とは何ですか?

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

Aベストアンサー

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qエクセル2010を使ってデータ分析をしたいのですがどこにあるのかわかり

エクセル2010を使ってデータ分析をしたいのですがどこにあるのかわかりません。 挿入のところでしょうか?データのところでしょうか?
友達にアドインを押して、分析ツールをエクセルに入れるといわれたのですが、アドインがどこにあるのかわからなく…。
教えていただけると助かります。

Aベストアンサー

分析ツールが有効になっていないためです。次の方法でアドインを読み込みましょう。

読み込みが完了しExcelを再起動すると「データ」タブ内に「分析」の項目ができて「データ分析ボタン」が表示され使用可となります。

Excel ヘルプで検索。

[データ分析] コマンドが表示されない場合は、分析ツール アドイン プログラムを読み込む必要があります。

1.[ファイル] タブをクリックし、[オプション] をクリックして、[アドイン] カテゴリをクリックします。
2.[管理] ボックスの一覧の [Excel アドイン] をクリックし、[設定] をクリックします。
3.[有効なアドイン] の一覧の [分析ツール] チェック ボックスをオンにし、[OK] をクリックします。
ヒント [有効なアドイン] の一覧に [分析ツール] が表示されない場合は、[参照] をクリックしてアドイン ファイルを検索します。

分析ツールが現在コンピューターにインストールされていないというメッセージが表示されたら、[はい] をクリックして分析ツールをインストールします。

分析ツールが有効になっていないためです。次の方法でアドインを読み込みましょう。

読み込みが完了しExcelを再起動すると「データ」タブ内に「分析」の項目ができて「データ分析ボタン」が表示され使用可となります。

Excel ヘルプで検索。

[データ分析] コマンドが表示されない場合は、分析ツール アドイン プログラムを読み込む必要があります。

1.[ファイル] タブをクリックし、[オプション] をクリックして、[アドイン] カテゴリをクリックします。
2.[管理] ボックスの一覧の [Excel アドイン] をクリッ...続きを読む

Q回帰関係の有意性と回帰係数の有意性の意味

「回帰関係の有意性」と「回帰係数の有意性」についての質問です。

この2つなんですが、それぞれ何故こんなことをするのでしょうか?
また何がわかるのでしょうか?

式を見たりしてもイマイチ理解ができず、困っています。
簡潔に説明して頂けると大変有り難いです(><;)

よろしくお願いします。

Aベストアンサー

>式を見たりしてもイマイチ理解ができず
統計学を数式で説明できるヒトなら可能です。私は、もっぱら国語で理解していますので。それと、回帰分析を何度もやればなんとかなります。といっても、回帰分析の解釈は、専門家でも間違っている例をいくつも知っています。

>「回帰関係の有意性」
有意性の判定を相関係数で行うのなら、x軸とy軸の両者の関係は偶然なのか否かの判定をします。有意であれば、回帰式も適切である、と考えます

>「回帰係数の有意性」
 回帰係数は、重回帰分析の時に、どの因子の影響が強いか、の判断に使えます。総合的なテストをして、国語と数学の点数との重回帰分析をすれば、どちらの能力が有利の判定は、回帰係数の大きいほうが有利、と判断します。

 回帰係数の有意性を利用するような検討は、想定しがたいのですが、間違いありませんか。有意性ではなく、有用性なら、回答は上記です。
 ご質問に忠実に解答すれば、数学と国語の関係の回帰式を日米2カ国で算出、この回帰式が異なること(日米では異なること)を示したい、なんぞの判定は、回帰係数の有意性から判断できます(同じであることは、主張できません)。すなわち、AとBの回帰式は異なる、ことを主張したいときには利用できますが、私の分野では使われた論文を読んだ記憶はありません。
 

>式を見たりしてもイマイチ理解ができず
統計学を数式で説明できるヒトなら可能です。私は、もっぱら国語で理解していますので。それと、回帰分析を何度もやればなんとかなります。といっても、回帰分析の解釈は、専門家でも間違っている例をいくつも知っています。

>「回帰関係の有意性」
有意性の判定を相関係数で行うのなら、x軸とy軸の両者の関係は偶然なのか否かの判定をします。有意であれば、回帰式も適切である、と考えます

>「回帰係数の有意性」
 回帰係数は、重回帰分析の時に、どの因子の...続きを読む

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

Q対応のない2群間の検定:点グラフで表したい

統計初心者です。
対応のない2群間の差の検定をMann-Whitneyテストで行いました。
その結果を点グラフで表したいです。
エクセルの散布図を使って書いてみましたが、中央値の表記ができません。
ちゃんとした統計ソフトを使わないと書けないものですか?
エクセルで書く方法をご存知でしたら教えていただきたいです。
宜しくお願いします。

Aベストアンサー

> その結果を点グラフで表したいです。
> エクセルの散布図を使って書いてみましたが、中央値の表記ができません。

中央値の表記というのが、中央値のマーカーを付け加えたいということなのか、それとも数値の書き込みをしたいということなのかよくわかりませんが、添付画像のようなグラフを描きたいということでしょうか?

添付画像でよければ、次のように作成します。

図のようにデータを入力する。
散布図でグラフを作成する。
中央値のデータラベルを表示する。
横軸のフォントの色を変更して見えないようにする。
テキストボックスを挿入して、横軸のラベルを付ける。

Q統計学のP検定とt検定について教えてください。

よく本を読んでいると出てきますが、なんだかよくわかりません。
HP等を使って検索してるのですが、これだ!という回答は得ることができず、いつも途中でオヤスミモードに突入してしまいます。
如何せん頭の活動がトロイ私にとって、計算式を出されてしまうと即効熟睡モードに入りますのでわかりやすく教えてください。
よろしくお願いいたします。

Aベストアンサー

大学院で研究をする際に道具として統計学を使っている者です.

>質問:統計学のP検定とt検定について教えてください.

P検定……? あまり聞き覚えがない検定名ですが,できましたら正式名称あるいはどのような場合に使用される検定か具体例を示して下さい.とりあえず「t検定」について説明します.

t検定とは正式な定義はともかくとして「t分布を利用した有意性検定」と考えていただくとよいでしょう.……ただしこの説明で分かる人はある程度統計学を勉強した人であって,統計学初心者の人にとっては意味不明かもしれません.
抽象的に考えると分かりづらいので,実際にt検定がどのように使われているかを
具体例を使って説明します.

使用例:男性と女性との体重に差があるか?

  ─────────────────────────────
   女性体重  51 48 51 52 45  平均値: 49.4
  ─────────────────────────────
   男性体重  60 58 58 63 70  平均値: 61.8
  ─────────────────────────────

 上の例では「女性群」「男性群」の体重データ,そしてその平均値が載っています.とある女性5人,とある男性5人に対して体重測定を行ったとします.
 質問その1です.「【この】データにおいて,女性と男性とでは体重の平均値に差があるといえますか?」
 
  男性体重-女性体重=61.8-49.4=12.4

 もし平均値に差がないのであれば「差=0」になるはずですが,「12.4≠0」であり,すなわち,男性と女性の体重には差があると断言できます.
 当たり前すぎて何を言っているんだろう,と思われたかもしれません.

 では質問その2です.「【このデータに限らず一般的に】,女性と男性とでは体重の平均値に差があるといえますか? データから【推測せよ】」
 さあどうでしょう? 「ん.どっかの本で男性の方が体重が重いと書いてあったかな?」といった,データ以外の情報を使わないでください.質問1との違いを区別していない人は「そんなのこのデータで男性>女性になっているから,当然,そうだろ?」と主張してしまいますが,これは誤りです.
 一般的に女性と男性の体重差に違いがあるかどうかを本当に調べるのであれば,この世の中の男性と女性全ての体重データを収集しなければなりません.さらには,そのデータはあくまでも「現在」であって,過去や未来のデータではないので,あらゆる時間のデータも収集する必要があります.……そんなのは絶対無理です!
 そのために,取れる範囲の人数のデータを使うしかありません.そこから「推測」するしかないのです.しかし,あくまでも推測でしかなく,そしてその推測が間違っている可能性もあります.この場合では,例えば「(全体としては本当は差がないのだけど)たまたま体重が軽い女性ばかり選んでしまった.たまたま体重が重い体重の男性を選んでしまった」という可能性もあります.
 このようなことを考えると,データの平均値から【即座に】結論を述べることはできません.これはt検定だけではなく,P検定?,あるいは統計学で使われている「検定」の基本的な考え方です.

 t検定に話を戻しますが,この特定データから推測して「一般的に,男性・女性体重に差があるか」を調べることができます.ちなみに上記データをt検定を行うと……

  t値=-4.79 自由度=8 確率=0.001372037

 という結果になります.この結果の読み取り方もこつがいるのですが,解読の流れとしては,

「【偶然で本当は差がないとして】,今回のような「12.4」という差があるということが発生する確率は「0.14」%である」→
「偶然で起きる確率が1%未満である」→
「それって滅茶苦茶珍しくない?」→
「それは偶然じゃないだろう? というよりは前提の『偶然で本当は差がない』というのがそもそも間違い何じゃないの?」→
「ということは,本当は差があるんだ!」

となって「やっぱり,一般レベルでも男性と女性の体重平均値には差がある」吐血論を下すことができるのです.

このように「t検定」の代表的な使用法としては「二つの平均値に本当に差があるか?」の検討があります(これを使えば,ある数値が本当に「0」よりも大きな数値であるか,なども検討できますが,今回は省略します).

大学院で研究をする際に道具として統計学を使っている者です.

>質問:統計学のP検定とt検定について教えてください.

P検定……? あまり聞き覚えがない検定名ですが,できましたら正式名称あるいはどのような場合に使用される検定か具体例を示して下さい.とりあえず「t検定」について説明します.

t検定とは正式な定義はともかくとして「t分布を利用した有意性検定」と考えていただくとよいでしょう.……ただしこの説明で分かる人はある程度統計学を勉強した人であって,統計学初心者の人にとっ...続きを読む


人気Q&Aランキング