
数学の問題で。。。0<θ<90 Sin2θ=cos3θのとき、θの値を求めよ
という問題があったのですが、回答を読んでもわかりません。
(1)0<θ<90から0<2θ<180
→これはわかります。
(2)よって、sin2θ>0 ゆえに cos3θ>0
→これも理解できます。 Sin2θ=cos3θだから、Sin2θが0より上なら
cos3θもってことですよね?
(3)0<3θ<270, cos3θ>0 から 0<3θ<90
→これは、本当は3θは0~270度までだけど、
cos3θ>0だから3θの値は0<3θ<90ってことですよね?
(4)よって0<2θ<60, 0<90-3θ<90
→ここがわかりません。なんでよって0<2θ<60なんですか?
60ってどこからでてきたんでしょう???
0<90-3θ<90もなんで、こんな式をしているのか理解できません。
(5)sin2θ=cos3θ を変形すると sin2θ=sin(90-3θ)
ゆえに、2θ=90-3θ θ=18
→そもそも、(1)~(4)までの計算って必要だったんでしょうか?
Sin(90-θ)=cosθになるって公式がわかれば、(1)~(4)までの
ことって不要で、いきなり、cos3θをsin(90-3θ)に変形させれば
いいんじゃないんでしょうか?θじゃなくて3θだから、大きさの確認をしたって
ことですか?
特に(4)がわかりません。ご助言のほどよろしくお願いします
No.3ベストアンサー
- 回答日時:
こういう問題はグラフの概形を描いてθを求めると間違いがないですね。
グラフから 0<θ<90°では
y=sin2θとy=cos3θ
が交点を持つのは1つだけであり、かつその交点のθは 0°<θ<30°であることが
明らかなのでそのθに対して
sin(2θ)=cos(3θ)=sin(90°-3θ)
を満たすのは
2θ=90°-3θ
の場合しか存在しないといえる。
これから
5θ=90°
∴θ=18°
が出てくる。
このθがグラフのただ1つの交点のθと一致することが確認できる。
質問者さんの解答はグラフで言えば明らかなことを数式を使い求めていることになりますね。
>特に(4)がわかりません。
(3)までで sin2θ>0, cos3θ>0(ただし0<θ<90°) が分かっているので
0<3θ<90°∴0<θ<30°…(■)
が言えるので(■)の式を2倍すれば(4)の
0<2θ<60°
の不等式が出てきます。
また公式を使ってcos(3θ)=sin(90°-3θ)と変形すればsin同士の比較が出来るので
「90°-3θ」が出てきて、(■)から
0<90-3θ<90°
が言えて
~~~~~~~
sin2θ=sin(90°-3θ) …(◆)
角(2θと(90°-3θ))がいずれも0°~90°の間の角だと言うことを示したい。
その結果
2θ=90°-3θ …(▲)
の関係を導き出せるのです。
~~~~~~~
>→そもそも、(1)~(4)までの計算って必要だったんでしょうか?
(◆)から(▲)を導き出すために必要なのです。
お分かりでしょうか?

おお~~グラフまではりつけてくださりありがとうございます。
しかも、みやすい上に分かりやすいです。おかげで理解できましたよ。
ありがとうございました。
No.4
- 回答日時:
>Sin(90-θ)=cosθになるって公式がわかれば、(1)~(4)までのことって不要で、いきなり、cos3θをsin(90-3θ)に変形させればいいんじゃないんでしょうか?
君の言うとおりだよ、解答が良くない。わざわざ遠回りをしている。
sin2θ=sin(90-3θ)だから、差を積に直すと、cos(π/2-θ)/2*sin(5θーπ/2)/2=0
ここで、(π/2-θ)/2と(5θーπ/2)/2の値の範囲を定めると、θ≠0から、θ=π/10.
たったこれだけの事なのにねぇ、参考書の解答には可笑しなものもある。
>(5)sin2θ=cos3θ を変形すると sin2θ=sin(90-3θ)ゆえに、2θ=90-3θ θ=18
正しくは、sin2θ=sin(90-3θ) → 2θ=90-3θ とは断定できない。2θ=3θ-90の場合だってあるんだから。
しかし、2θ=90-3θ が言いたくていろいろやってるとこを見ると、和(差)→積 の公式を使えない高1の問題なんだろうか。
高2なら、その公式を使う事は何の問題もないから。
なるほど~~そいういうやり方もあるんですね。参考になります。高校二年の2Bの参考書にのっていた問題でした。
おかげでよりいっそう理解が深まりました。ありがとうございました。
No.2
- 回答日時:
(1)(2)(3)はその通り。
(4)は、(3)で 0<3θ<90° が得られているので、
この式の各辺を、3で割れば、
0<θ<30°ですから、
これから、
0<2θ<60°‥‥(A)
がでます。
>0<90°-3θ<90°もなんで、こんな式をしているのか理解できません。
0<3θ<90°ですから、-90°<-3θ<0
この各辺に、90°を加えて、0<90°-3θ<90°‥‥(B)
>→そもそも、(1)~(4)までの計算って必要だったんでしょうか?
2θや90°-3θの範囲を押さえています。
(5)の変形で必要になる。
(5)
>(5)sin2θ=cos3θ を変形すると sin2θ=sin(90°-3θ)
>ゆえに、2θ=90°-3θ θ=18
sin2θ=sin(90°-3θ) ならば、2θ=90°-3θ ‥‥(C)
このことが成立するのは、(A)、(B)があるからなのです。
2θや90°-3θの範囲が定まらなければ、
例えば、2θ=60° 90°-3θ=420°でも、sin2θ=sin(90°-3θ) は
成立していますよね。
すべては(C)の準備のためだったわけです。お分かりになりましたか。
No.1
- 回答日時:
(1)~(4)までの計算がなければ、(5)で
sin2θ=sin(90-3θ) → 2θ=90-3θ
が言えません。
sinは周期関数なので一般的にsin(x)=sin(y)だからといってx=yになるとは限りません。
実際、この問題の例でもしθ=90ならば sin2θ=sin(90-3θ) は成り立ちますが 2θ=90-3θ とはなりません。
したがって(5)を言いたいがためにsin(x)の x が 0<x<90 の範囲内にあることを言っておきたいわけです。
これならsin(x)が決まればxが一意に決まるため(5)が成り立つことになります。
ここで(4)に戻って考えますと、
(5)で sin2θ=sin(90-3θ) という式が出てきているので、2θと(90-3θ)の両方が0~90の範囲内に収まっている必要があります。
(4)で(90-3θ)が出てきているのは唐突な気がしますが、(5)への布石というわけです。
また、0<2θ<60となるのはなぜかというのは単純な話で、(3)で0<3θ<90であることが分かったので0<θ<30となりますから0<2θ<60であるということです。
0<2θ<90を満たしさえすれば良いのでことさら2θ<60であることを強調する必要はないのですが、(3)の0<3θ<90から導き出したことがわかるようにこのような表現にしてあるのだと思います。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
今、見られている記事はコレ!
-
隣の枝がはみ出してきたら切ってもいい?最もやってはいけないことは?
「隣の木が越境してきて困るが、勝手に切ってはいけないと聞くし…」そう思っている方も多いだろう。実は、2023年4月1日に民法が改正され、この「越境枝」のルールが大きく変わった。 教えて!gooでも「境界から出て...
-
弁護士が解説!あなたの声を行政に届ける「パブリックコメント」制度のすべて
社会に対する意見や不満、疑問。それを発信する場所は、SNSやブログ、そしてニュースサイトのコメント欄など多岐にわたる。教えて!gooでも「ヤフコメ民について」というタイトルのトピックがあり、この投稿の通り、...
-
弁護士が語る「合法と違法を分けるオンラインカジノのシンプルな線引き」
「お金を賭けたら違法です」ーーこう答えたのは富士見坂法律事務所の井上義之弁護士。オンラインカジノが違法となるかどうかの基準は、このように非常にシンプルである。しかし2025年にはいって、違法賭博事件が相次...
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
微分の計算で arctan(asinx+bc...
-
sin2xの微分について
-
e^iθの大きさ
-
教えてください!!
-
tanθ=2分の1のときの sinθとcos...
-
高1 数学 sin cos tan の場所っ...
-
式の導出過程を
-
θが鈍角のとき、sinθ=4分の3の...
-
3辺の比率が3:4:5である直...
-
sinθ+cosθ=1/3のとき、次の式の...
-
力学・くさび
-
アークサインの微分
-
∫sin^2x/cos^3xdxの解き方が...
-
この問題の半径rと中心核αの扇...
-
0°<θ<180°とする。4cosθ+2sinθ=...
-
加法定理の応用問題でcosα=√1-s...
-
sinθ<tanθ
-
sinθ-√3cosθをrsin(θ+α)の形...
-
複素数表示をフェーザ表示で表...
-
急いでます! θが鈍角で、sinθ...
おすすめ情報