直流電流増幅率のhFEは、hybrid forward emitterの略だと、検索をかけて1つのサイトからやっとわかりましたが、それでもhybrid forward emitterがどういう意味で直流電流増幅率になるのかわかりません。
それにhは小文字でFEは下付の大文字で表わすのが正しいようです。これもどうしてなんでしょうか。hFEのことを説明しているサイトのほとんどは単に「直流電流増幅率(hFE)」などと書いているくらいです。HFE、hfeなどの書き方もたくさん見られます。下付の大文字をきちんとテキストレベルで表記しているサイトもありますが、下付の大文字なんてどうやって入力するのかもわかりません。
トランジスタの基礎から勉強を始めています。決してどうでもいいことではないと思うのですが教えていただけないでしょうか。

このQ&Aに関連する最新のQ&A

A 回答 (4件)

hFEの h は4端子回路の特性を示すパラメータの一種でHybrid parameterからきています。


4端子パラメータには、Zパラメータ、Yパラメータなどが有ります。
hパラメータはZパラメータとYパラメータの雑種なのでhybridなのです。
http://ja.wikipedia.org/wiki/%E4%BA%8C%E7%AB%AF% …

トランジスタは3端子の素子なのでこれを4端子回路にするにはどれかの端子を2本にして4端子にする必要が有ります。
エミッタを2本にした回路はエミッタ接地回路と呼ばれます。hFEのEはこの事を表します。

forward は増幅率の高い方を順方向とするのでforwardになります。

トランジスタで何故hパラメータを使用するのかと言うと測定のし易さが理由です。
ZパラメータのZ11、Z21を測定するときはI2=0を条件として測りますが、
エミッタ接地の出力インピーダンスは高いのでI2=0にしようとすると出力電圧がトランジスタの動作範囲を超えてしまいます。
YパラメータのY11、Y21ではV2=0が条件ですが、これは定電圧源につなぐことで実現できます。

Z12、Z22についてはI1=0が条件ですが、これはエミッタ接地のベースを電流源で駆動することを意味しますが簡単に実現できます。
Y12、Y22についてはV1=0が条件です。
これはエミッタ接地のベースのインピーダンスは比較的に低いのでわずかな変動でも入力電流が変化して測定値に誤差が生じます。
その為、V2=0とI1=0の条件で測定するhパラメータが使用されます。
    • good
    • 1
この回答へのお礼

Wikiの「二端子対回路(四端子回路)」の項目読みました。パラメータの一つのhパラメータで、エミッタで2端子分をくくっているのでFEになるということは(まだ全然正確ではありませんが)何とかわかりました。初学者の自分には「行列」やZパラメータ・Yパラメータの電流・電圧条件に関しては正直いって理解はまだまだ先のようです。でも昔、何もわからないまま作っておいたhFEチェッカを改良しながらまずは基礎をおさえようと思っています。早々のご回答ありがとうございました。

お礼日時:2011/04/21 22:44

hFEとhfeの大文字と小文字の違いは、FEは、直流に対する電流増幅率で、feは小信号増幅率を表しています。

要するに、直流か交流化の違いで、厳密には値が異なりますが、hFE≒hfeとすることも多く見かけます。
式で書くと、
hFE=Ic/IB と hfe=⊿ic/⊿ib という違いになります。

HFEは、日本では一般的ではないですね。たぶん、洋書からきてるのだと思いますが。

hybridは、自動車でもハイブリッドカーというのがありますね。意味するところは同じです。2つ以上の異なるものを持つ(混成)という意味です。
    • good
    • 3
この回答へのお礼

大文字と小文字の違いハッキリしました。とりあえず今、自分が扱っているのはhFEのようです。これから何かの折に記述をする時にはきちんと使い分けます。ありがとうございました。

お礼日時:2011/04/21 23:27

hパラメータはトランジスタの特性をよく表すものです。

4つの定数で1組のhパラメータとなります。hfeはそのうちの1つです。

hybridと言われる理由
他のインピーダンスパラメータやアドミタンスパラメータのように一種類の物理単位でなく、インピーダンスや増幅率等の複数が含まれるからです。

hfe
エミッタ接地で動作させた場合の、順方向電流増幅率、という意味です。

パラメータ
hybridパラメータ インピーダンスパラメータ、アドミタンスパラメータ、散乱パラメータ等、色々あります。どれも入力と出力間の回路特性を記述するもので、入力、出力とも1個ずつ(つまり2ポート)ならば4個の定数で1組になります。ある1つの回路の特性をどのパラメータでも表せるので、目的に応じたパラメータを使用します。hパラメータも変換操作を行ってインピーダンスパラメータに換算可能です。
    • good
    • 1
この回答へのお礼

今勉強している受験内容では「パラメータ」ということばまでは出て来ていなかったので、当たり前のことですが奥の深さを感じています。でも教えていただいたレベルまで少しでも理解できれば一歩先にいけそうです。ありがとうございました。

お礼日時:2011/04/21 22:57

向学心、探究心旺盛な方と見受けます。


必要は発明の母、探究心は?の父
頑張ってください。

まずwikiで「hパラメータ」をお調べください。
そのあと下記URLでトランジスタのhパラメーターを
勉強してください。

参考URL:http://www.teu.ac.jp/tbcs/class/electronic/elec9 …
    • good
    • 0
この回答へのお礼

「hパラメータ」ということばがキーワードだったんですね。とてもすぐには色々な「パラメータ」の全体まで理解することはできそうにありませんが、hFEチェッカやブレッドボードを使って検証しながら、基本をおさえていこうと思います。早急なご回答ありがとうございました。

お礼日時:2011/04/21 23:12

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qトランジスタの増幅率

小信号電流増幅率hfeと直流電流増幅率hFEの違いについて教えてください?
よろしくお願いします!!

Aベストアンサー

IB-IC特性上のある点P(IB,IC)を動作点とします。信号がゼロのときの原点からP点の傾きは、IC/IBと表され、これが直流電流増幅率hFEです。(直流に対するIBとICの比です。)

一方、P点からΔIB変化したとき、ICはΔICだけ変化したとします。この比ΔIC/ΔIBが小信号電流増幅率hfe(βと書かれることもあります。)です。これは、数学で言われているP点における接線の傾きと同じ意味です。

小信号電流増幅率hfeと直流電流増幅率hFEは、ほとんど同じ値となりますが、厳密に言うとhfe≒hFEとなり少し異なります。この違いは、IB-IC特性は、ほぼ直線ですが、実際は少し曲線になっているからです。
原点からP点までの直線の傾きと、P点の接線の傾きの違いです。

図がないので、分かりにくかったらすみません。

Qトランジスタのhパラメータについて

トランジスタのhパラメータについていくつか質問させて下さい。

(1)hパラメータの物理的意味について

(2)hパラメータが一般的にトランジスタの等価回路定数として用いられる理由

(3)hパラメータの実測値と規格表の値を比較した場合、その誤差はなぜ生じるか

以上です。

回答してくださる方をお待ちしております。

それでは、よろしくお願いいたします。

Aベストアンサー

(1)hパラメータの物理的意味について

トランジスタに限りませんが入出力特性が明らかになるのです 設計に欠かせません 
こう 入力すれば こう 出力する と解ります 入出力特性が計算で求められるのです

(2)hパラメータが一般的にトランジスタの等価回路定数として用いられる理由

hパラメータは主に低周波で良く近似出来る 高周波ではyパラメータが 超高周波ではSパラメータ
他に4端子パラメータがあります 周波数によって使い分けられます 近似の仕方に色々ある訳です

(3)hパラメータの実測値と規格表の値を比較した場合、その誤差はなぜ生じるか

トランジスタ自身にバラツキがあるから 例えば hfe コレクタ電圧電流温度 同一条件でも5倍位は普通です
メーカーカタログに載っているグラフは参考であり 保証ではありません
保証はあくまでも仕様書にあるものだけです 全ての条件で保証出来ませんので条件が付いてます
例えば 温度、電圧、電流etc hfeは温度50度の変化で約50%変化します 覚えやすいですね?
こんな大きなバラツキがあって設計に役立つの?と言いたいかも知れません
でも無かったらもっと大変です 約に立っているのです

メーカーカタログの見方を知る事が大事なのです。

(1)hパラメータの物理的意味について

トランジスタに限りませんが入出力特性が明らかになるのです 設計に欠かせません 
こう 入力すれば こう 出力する と解ります 入出力特性が計算で求められるのです

(2)hパラメータが一般的にトランジスタの等価回路定数として用いられる理由

hパラメータは主に低周波で良く近似出来る 高周波ではyパラメータが 超高周波ではSパラメータ
他に4端子パラメータがあります 周波数によって使い分けられます 近似の仕方に色々ある訳です

(3)hパラメータの...続きを読む

Q電圧増幅度の出し方

入力電圧と出力電圧があってそこからどうやって電圧増幅度を求めるんですか?
電圧増幅度を出す式を教えてください

Aベストアンサー

増幅回路内の各段のゲイン、カットオフを求めて、トータルゲイン及びF特、位相
を計算するという難しい増幅回路の設計にはあたりませんので、きわめて単純に
考えればいいですよ。

電圧利得(A)=出力電圧/入力電圧

となります。

これをデシベル(dB)で表すと

G=20LogA(常用対数)

で計算できます。

ご参考に。

Qトランジスタのベース・エミッタ間飽和電圧とは

電子回路の本を読んでいて、トランジスタに「ベース・エミッタ間飽和電圧」という用語があるのを知りました。

以下のことを知りたいと思い検索してみましたが、なかなか良い情報にたどり着けませんでした。

1. この電圧の定義 : ベース端子とエミッタ端子の間の電圧なのか?
2. この電圧の特性 : 大きければいいのか、小さいほうがいいのか?
3. 飽和の意味: コレクタ電流が最大になった状態という意味で正しいのか?

上記に関する情報または情報源についてよろしくお願いいたします。

Aベストアンサー

>1. この電圧の定義 : ベース端子とエミッタ端子の間の電圧なのか?

回答>>そうです。

>2. この電圧の特性 : 大きければいいのか、小さいほうがいいのか?

回答>>どちらかと言えば小さい方が良い。

>3. 飽和の意味: コレクタ電流が最大になった状態という意味で正しいのか?

回答>>ベース・エミッタ間飽和電圧はコレクタ電流が最大になった状態とは違います。
 まず、コレクタには外部から定電流源で規定の電流、例えば100mAを流しておきます。このときベースにも規定の電流を外部から定電流源で、例えば10mAを流します。このベース電流は半導体メーカによりますが、コレクタ電流の1/10または1/20を流します。通常hFEは100くらいか、それ以上の値を持ってますのでこのベース電流は過剰な電流と言うことになります。例えばhFEが100あったとすれば、ベース電流が10mAならコレクタ電流はそのhFE倍、すなわち1000mA流せることになります。逆にコレクタ電流を100mA流すのに必要な最低のベース電流はその1/hFEでよいわけですから、1mAもあればよいわけです。
 「ベース・エミッタ間飽和電圧」の仕様はトランジスタをデジタル的に動かしてスイッチとして使う場合を想定したものです。
 例えばコレクタ負荷が抵抗で構成されてる場合にトランジスタがONしてコレクタ電流として100mA流す場合、トランジスタをしっかりONさせるためにベースにはhFEから考えてぎりぎりの1mAより多くの電流を流します。
 このように必要以上にベース電流を流すことをオーバードライブと言いますが、そのオーバードライブの度合いをオーバードライブ係数、Kov=Ic/Ib で定義します。コレクタ電流を100mA流し、ベース電流を10mA流せばオーバードライブ係数、Kovは 10になります。
 実際にトランジスタをスイッチとして使用する場合はこのオーバードライブ係数を目安にして、ベース電流を流すように設計します。その際、ベースーエミッタ間の電圧VBEが計算上必要になりますのでこのベース・エミッタ間飽和電圧を使います。例えば、NPNトランジスタをONさせてコレクタに100mA流す場合、ベースにコレクタ電流のKov分の1の電流を流すようにベースと信号源の間の抵抗値RBを計算します。信号源の「H」の電圧が2.5Vの場合、RBはベース・エミッタ間飽和電圧をVBE(sat)とすれば、

    RB=(2.5V-VBE(sat)/10mA 

のようにして求めます。

>1. この電圧の定義 : ベース端子とエミッタ端子の間の電圧なのか?

回答>>そうです。

>2. この電圧の特性 : 大きければいいのか、小さいほうがいいのか?

回答>>どちらかと言えば小さい方が良い。

>3. 飽和の意味: コレクタ電流が最大になった状態という意味で正しいのか?

回答>>ベース・エミッタ間飽和電圧はコレクタ電流が最大になった状態とは違います。
 まず、コレクタには外部から定電流源で規定の電流、例えば100mAを流しておきます。このときベースにも規定の電流を外部から定電流源で、例...続きを読む

Qダイオードの用途

ダイオードの用途について教えてください。ダイオードは何かは分かっていますがどのような使用用途なのか教えてください。
整流用のダイオードとツェナーダイオードについてお願いします。

Aベストアンサー

整流用ダイオードはダイオードの順方向特性を利用して、交流を直流(脈流)に変換するために使用します。一番身近な物としてはACアダプターなどで、これはトランスとダイオード、平滑用コンデンサーだけで構成されたものが多いでしょう。最近では小型化や大容量化のためにトランスを用いないスイッチング方式の物も増えていますが、これらの機器でも、交流を直流に変換するのにはやはりダイオードを使用しています。ダイオードとは素子の名称で、整流器と言う意味でレティファイヤーと呼ぶ場合もあります。一般にPN接合型シリコンダイオードが用いられ、形状としては素子を単独でパッケージした物、2つの素子をアノードコモンまたはカソードコモンの状態でパッケージした物、4本の素子をブリッジ構成に接続してパッケージした物などがあります。整流用に使用する場合は以下の点に留意する必要があります。耐電圧は十分な余裕(2~3倍程度)を取る、尖頭電流(誘導負荷や平滑用コンデンサーなど)に対して十分な余裕を持つこと、大電力での使用では放熱にも留意が必要です。また、商用電源程度の周波数であれば問題ないのですがスイッチング電源等で使用する場合は、動作速度が高速なショットキーバリア型やファストリカバリー型を使用しないと正常に動作しないばかりか、破壊にもつながります。

ツェナーダイオードは逆方向に電圧を掛けて使用します。用途としては定電圧電源の基準電圧や回路の入力保護などに用いられています。ツェナーダイオードに逆方向の電圧を印加していくと、ある電圧(ツェナー電圧)で急激に電流が流れ始めます。通常のダイオードでも逆方向に電圧を掛けていけば、ある電圧に達したところで一気に電流が流れ始め(なだれ現象)ますが、これはダイオードの破壊を意味します。ツェナーダイオードでは素子の破壊なしにこの現象が利用できる点が他のダイオードと異なります。
一番単純な使用法はツェナーダイオードと抵抗だけで構成された定電圧回路ですが、ごく少容量の回路以外ではまず使用されません。これはツェナー電圧を超えた分の電圧は全て抵抗とツェナーダイオードで消費されることになり、大電流を流すことが不可能であり、また、回路の効率も低いものになってしまいます。そこで、トランジスタなどの他の能動素子とあわせて使用し、ツェナーダイオード自体は基準電圧の発生用に使用するのが一般的です。実際の使用にあたっては、ツェナーダイオードでの消費電力(ツェナーダイオードに流れる電流×ツェナー電圧)に対して十分な余裕を見ること、余裕が少ないとツェナーダイオード自体の発熱で、電圧が変化してしまいます。通常供給されている(手に入る)物は3V~60V程度の範囲なので必要に応じて分圧回路と併用し必要な電圧得る。ゲートICなどの入力保護に用いる場合ICの電源電圧を超えない範囲でスレッシュホールド電圧に十分な余裕を取ることなどです。

ダイオードにはこの他にも定電流ダイオード(ある負荷に対しての電圧が変化しても電流を一定に保つ、充電器や回路保護などに使用)や、バリキャップ(ダイオードに逆方向の電圧を掛けたときにPN接合層に生じる空乏層の大きさが変わるのを利用しコンデンサとして利用、FM変調等に利用)、発光ダイオード、PINフォトダイオード(光リモコンなどでおなじみ)、GUNダイオード(衛星放送の検波用としてアンテナに組み込まれています)、ゲルマニュームダイオード(シリコンダイオードに比べ低い電圧での動作が可能、シリコンダイオードでは0.6V(機種により異なる)以下ではどちらの方向にも電流が流れない)、などが有ります。また、ダイアック(双方向のツェナーダイオード)は交流回路でトライアックと組み合わせて調光器などに、整流用のダイオードに制御端子を付けた(内部的にはPNPNなどの4層構造)SCR(シリコンコントロールレティファイヤ、シリコン制御整流器)などもダイオードとは呼びませんが、電力制御用の整流器として用いられます。

整流用ダイオードはダイオードの順方向特性を利用して、交流を直流(脈流)に変換するために使用します。一番身近な物としてはACアダプターなどで、これはトランスとダイオード、平滑用コンデンサーだけで構成されたものが多いでしょう。最近では小型化や大容量化のためにトランスを用いないスイッチング方式の物も増えていますが、これらの機器でも、交流を直流に変換するのにはやはりダイオードを使用しています。ダイオードとは素子の名称で、整流器と言う意味でレティファイヤーと呼ぶ場合もあります。一般...続きを読む

Q計算値と理論値の誤差について

交流回路の実験をする前に、ある回路のインピーダンスZ(理論値)を計算で求めたあと、実験をしたあとの測定値を利用して、同じ所のインピーダンスZ(計算値)を求めると理論値と計算値の間で誤差が生じました。
そこでふと思ったのですが、なぜ理論値と計算値の間で誤差が生じるのでしょうか?また、その誤差を無くすことはできるのでしょうか? できるのなら、その方法を教えてください。
あと、その誤差が原因で何か困る事はあるのでしょうか?
教えてください。

Aベストアンサー

LCRのカタログ値に内部損失や許容誤差がありますが、この誤差は
1.Rの抵抗値は±5%、±10%、±20% があり、高精度は±1%、±2%もあります。
2.Cの容量誤差は±20% 、+50%・ー20% などがあり
3.Lもインダクタンス誤差は±20%で、
3.C・Rは理想的なC・Rでは無く、CにL分、Lに抵抗分の損失に繋がる成分があります。
これらの損失に繋がる成分は、試験周波数が高くなると、周波数依存で増大します。
また、周囲温度やLCRの素子自身で発生する自己発熱で特性が変化します。
測定器や測定系にも誤差が発生する要因もあります。
理論値に対する測定値が±5%程度発生するのは常で、実際に問題にならないように、
LCRの配分を工夫すると誤差やバラツキを少なく出来ます。
 

QVccとVddの違い

トランジスタのバイアス電圧などでよくVccとかVddとかかかれているのをみます。
Vccのccとは何の略で、Vddのddとは何の略なのでしょうか?
また使い分け方を教えて下さい。

Aベストアンサー

cはコレクタ,dはドレインの略です.
Vcと表記すると該当のトランジスタ1個のコレクタ電圧を指しますよね.
Vccという表記は,それと明確に区別するために使われていると思います.
ccで,複数のトランジスタのコレクタを意味しているのでしょう.
つまり,ccは「コレクタ側電圧(電源)」,ddは「ドレイン側電圧(電源)」
と考えればよいでしょう.
ちなみに,Veeでエミッタ側のマイナス電源(NPNの場合)を表します.
それと,ccとかddとかは,大文字でCC,DDと表記することが決まっている
はすです.小文字の場合は「小信号」を意味するからです.
IEEEやJEDECで表記の規則が手に入るはずです.

QPNP型、NPN型トランジスタなにが違うの?(特性?)

トランジスタでPNP型NPN型って動作特性がかわってくるんですか?なにがちがうんですか?(構造が違うのはわかりました。)
またトランジスタ選定するときは何を基準に選定すればいいですか?
また易しくおしえてください。宜しくお願いします。

Aベストアンサー

追加まで
ojinさんの回答にありますが、まずNPNとPNPでは周波数特性が大きく違うのです。どちらも2種類3個の半導体の接合で出来ていますね。
真ん中のPまたはNがベースになります。このベースに注入された電流「少数キャリヤ」が引き金となってエミッターからコレクターに数百倍の電流が
流れます。この少数キャリアが電子かホールで周波数特性が大きく異なるのです。電子の半導体中での移動度とホールの移動度を調べてみてください。
一桁ほど違いますから。当然、電子が早いですね。ということでNPNの周波数特性が良いのです。スイッチングも早くなるわけです。
周波数特性で選べばNPNということです。PNPも電位の関係で使いやすいのですが周波数の高いものには特性上だめですね。電源回路やオーデイオ回路、バイアス回路などには良く使います。
「少数キャリア:少数か多数かは素子がP型であればホールが多数、電子が少数、N型であれば逆です。」
参考程度まで

QトランジスタのVbeが0.6vである理由

色々探したのですが,どうもイマイチしっくり来る答えが得られなかったので,質問させてください.

一般的な電流帰還増幅回路において,例えば入力電圧が2.6vでも3.6vでも,
おおよそVbe=0.6になる理由が分かりません.
(参考:http://www.page.sannet.ne.jp/je3nqy/analog/1tramp2.htm)

                ←Ic
           ┌───┬── Vcc=10v
           │
           Rc=100kΩ
           │
   Ib →      C   
  ──── B      
  ↑        E     
  Vin        │
  │        Re=20kΩ
  ─┐       │
    ┷        ┷    
  接地(0V)   接地(0V)


例として上記回路にて,
Vin= Voffset(1.6v)+Vampl(+-1mv),
Ic=Is・exp(Vbe/Vt) :指数関数で表せるNPN-バイポーラTr
Is=1pA,Vt=26mV
としておきます.
(参考図書:トランジスタの料理法)


このとき,一般的な増幅度を求める計算では,
先ず,Icに流れる直流電流を 50μA とすると,
直流に対しては Vbe=0.6v なので,VRe=1.0v,Re=VRe/Ic=20kΩ,
と求めてゆくと思いますが,

本来,Ic=50μA流すのであれば,
Ic=Is・exp(Vbe/Vt)を解くと,Vbe=0.46vとなり,0.6vも必要としないと思います.
つまり,
Vbe=0.46v,Re=1.14vとなるのではないでしょうか?


この回路とは別に,単純にR1=10kΩの抵抗と,R2=20kΩの抵抗を直列に繋ぎ,
それを電流源に繋いだ以下のような回路であれば,

 ┌─────┐
 │         │
 │         R1=10k
 │         │
 │         │
 Iin=50μA    │
 │         │
 │         R1=20k
 │         │
 └─────┘

R1,R2を別々に考えて,
VR1=Iin・R1= 0.5v,
VR2=Iin・R2= 1.0v,で求められ,
VR1-to-VR2の端子電圧=VR1+VR2=1.5v
と求めることが出来るはずです.線型素子なわけですし.


なぜ,このような単純な抵抗の場合と,話が食い違うのでしょうか?
トランジスタを「π型等価回路」として見た場合も,
入力be間は単なる抵抗Rπで表すことが出来るはずです.

これは,エミッタ抵抗による負帰還がかかっていることに由来するのでしょうか?
若しくは,ツェナーダイオードによる定電源の様な,ダイオードの特性によるものでしょうか?
幾らトランジスタが非線形といえど,オームの法則による分配則ぐらい成り立つはずだと思ってます.


加えまして,
トランジスタを「π型等価回路」として見た場合,
Vin=Rπ・Ib + Re・Ie = Ib・(Rπ + (1+β)・Re),
Vbe= Ib・Rπ,これより,
Vbe/Vin = Rπ/(Rπ + (1+β)・Re) となり,
(Rπ=β/gm,gm=Ic/Vt)

Vbe=2.5%
gm´=1/Re=97.5%
の割合で,電圧がかかていると言うことが言われていますが..(トランジスタの料理法より)

確かに一応,数式では出ていますが,Reが無いトランジスタ単体での増幅が,
Ic=Is・exp(Vbe/Vt)の式より全て導出できるのに,Reが入ることで,
どうもハッキリとしない「Vbe=0.6v なので,VRe=1.0vで..」
と言った計算をしなければなら無い理由がよく分かりません.


一般的な電流帰還増幅回路において,例えば入力電圧が2.6vでも3.6vでも,おおよそVbe=0.6になる理由がを教えてください.
宜しくお願い致します.

色々探したのですが,どうもイマイチしっくり来る答えが得られなかったので,質問させてください.

一般的な電流帰還増幅回路において,例えば入力電圧が2.6vでも3.6vでも,
おおよそVbe=0.6になる理由が分かりません.
(参考:http://www.page.sannet.ne.jp/je3nqy/analog/1tramp2.htm)

                ←Ic
           ┌───┬── Vcc=10v
           │
           Rc=100kΩ
           │
   Ib →      C   
  ──── B ...続きを読む

Aベストアンサー

単純に、「Is=1pA」では大きすぎるのでは?
下記のリンク先では「Is=0.0001~0.01pA」位になっています。
http://dsaz37.hp.infoseek.co.jp/idealtr.html
http://homepage1.nifty.com/th3/tramp.htm
http://home.ee.kanagawa-u.ac.jp/sken/items/Activities/d2_02.htm

QNPNとPNPの違いについて

調べていてもよくわからないので質問します。

NPNを使用するメリットはなんなのでしょうか?
PNPを使用するメリットはなんなのでしょうか?

なぜ日本はNPNが主流なのでしょうか?
2線式はどちらでも関係ないと聞きましたがなぜでしょうか?

安全ならなぜPNPに統一しないのでしょうか?

なぜ黒と青の短絡のみ話に上がるのでしょうか?
茶と黒が短絡したときは考えなくていいのでしょうか?

そもそも一つの回路にNPNとPNPの混載はできるのでしょうか?



質問が多くなりましたが一つ一つ電気の知識のない私にも理解できるように
御回答宜しく御願い致します。

Aベストアンサー

こんにちは。

制御回路の安全性のお話ですね。

NPNを使用するメリットはなんなのでしょうか?
PNPを使用するメリットはなんなのでしょうか?
→使用される地域の考え方の問題です。
 一応IEC規格の考え方(提案したEU)では、安全回路に使われる三線式センサの様なものは、PNPタイプ(ソース出力タイ  プ)でないと設計しずらくなります。
 別にPNPでなくても回路構成は可能ですが、変則的になるのでやめた方が無難です。
 特にメリット、デメリットや優劣の問題ではありません。 思想の問題です。

なぜ日本はNPNが主流なのでしょうか?
→第二次大戦後に経済や技術が米国との結びつきが大きかったから、北米仕様のNPNが主流になったと考えています。

2線式はどちらでも関係ないと聞きましたがなぜでしょうか?
→信号自体のの保護が出来ないからで、もし保護するなら論理や動作チェックですべきでしょう

安全ならなぜPNPに統一しないのでしょうか?
→最初にご説明したとおり地域ごとの安全に対する思想(実は習慣もありますが)の違いですから、統一する絶対的な必要性は無いと考えていますが、効率や誤り低減(結局は安全性にたどりつくが)の為に、IECでそちらの方向を規格化しています。
あくまで安全に関わる回路についてのお話です。
一番まずいのは同一システム(機器)内における両者の混用です。

なぜ黒と青の短絡のみ話に上がるのでしょうか?
茶と黒が短絡したときは考えなくていいのでしょうか?
→PNP推奨の思想自体が「安全に関わるクラス1機器内での電線の地絡」を考えているからです。
 電源と信号線の短絡は考えてなく、信号線とGND線の短絡ではなく、信号線と接地されているクラス1の保護接地筐体の  地絡を考えています。
 これはヨーロッパ地域(独)の思想と思いますが、安全に関わる制御回路配線で一番起こりそうで危険な事象が「配線の   筐体への地絡」と考えているからです。
 電源線の地絡は、もし安全に影響があるなら、過電流保護を行います。
 信号線の地絡はPNP(地絡時に動作しない方向の論理出力)出力にして保護します。
 GND線は筐体保護接地と同電位にして、迷走電流が起こらない様にするのが普通です
 (認められた強化絶縁や二重絶縁構造にして浮かす手法もありますが)

そもそも一つの回路にNPNとPNPの混載はできるのでしょうか?
→途中でご説明した様に、誤使用のリスクが発生するので採用する設計者は、その点を踏まえた上での採用となるでしょう。
 最近のEU指令では強化されている「リスクアセスメント」を充分考慮した上での話ととなります。

簡単にご説明出来れば良いのですが、ほとんどの電気設計者も良くわかっていない様な難しいお話なので、雰囲気がわかれば良いいのでは? と思います。

ちなみに日本国内はJISがIEC規格を丸写ししていますので、そういった規格も存在しますが、産業機器の場合は必ずしも厳密に考えなくても、と思っております。

製造物責任に関わるような万が一のトラブルにおいても、絶対にJIS規格でなければということはないと思います。
これはEU指令のように設計規格が厳密に定められていないからです。
一応、労働安全衛生法の設備機械の設計指針はありますが、参照規格までは書かれていません(日本古来の暗黙の了解ではJISとなるという役所もありますが、要は責任の取り方の問題です)

以上、参考までに

こんにちは。

制御回路の安全性のお話ですね。

NPNを使用するメリットはなんなのでしょうか?
PNPを使用するメリットはなんなのでしょうか?
→使用される地域の考え方の問題です。
 一応IEC規格の考え方(提案したEU)では、安全回路に使われる三線式センサの様なものは、PNPタイプ(ソース出力タイ  プ)でないと設計しずらくなります。
 別にPNPでなくても回路構成は可能ですが、変則的になるのでやめた方が無難です。
 特にメリット、デメリットや優劣の問題ではありません。 思想の問題です。

な...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報