出産前後の痔にはご注意!

質問のタイトル通りなのですが、素数と因数とは何ですか?
この先習うと思うんですが、出来れば今すぐ知りたいので…
本を見ても言い方が難しくよく分かりません。
簡単にで良いのでよろしくお願いします。

後、因数分解のやり方も良ければお願いします。

このQ&Aに関連する最新のQ&A

素数」に関するQ&A: 素数は無限

A 回答 (3件)

SARASA13さん、こんにちは。



>素数と因数とは何ですか?

素数というのは、1と、その数以外で割り切れないような
正の整数のことです。
たとえば、2=1×2 と1と2しか約数がないので素数。
3=1×3
5=1×5
・・・
あと、7,11,13・・・と続いていきますが、
このように1とその数以外の約数を持たないものを言います。

それに対して、因数とは、ある数の約数のことです。
たとえば、10=2×5となりますので
2も5も、10の因数といえますね。
このように、素数の積に分解することを、素因数分解と言います。

http://www.shinko-keirin.co.jp/sansu/WebHelp/6ne …



これに対して、因数分解とは、共通の項をくくりだすことです。

http://www.kgc.keio.ac.jp/sugakuka/3nen/insu.html

因数分解では、必ずしも整数を分解するとは限らないですね。
整式を分解することもありますね。

x^2-y^2=(x-y)(x+y) のように分解します。

ご参考になればうれしいです。

参考URL:http://www.hokuriku.ne.jp/fukiyo/math-obe/sosuu. …
    • good
    • 9
この回答へのお礼

ありがとうございます。
因数分解って、素数の積に分解する式の事だったんですね。
それ自体知りませんでした…
後、リンクの方もいかせてもらいました!!
凄くわかりやすかったです。
本当にありがとうございました。

お礼日時:2003/11/13 08:36

こんばんは



素数とは正の整数の内、自分自身と1以外の整数を約数に持たない数です。
最小の素数は2で、3、5、7、11、13、・・・と無限に存在します。

因数とは整数の約数を言います。
が、因数分解という言い方をする場合、因数は整数とは限らないので、注意が必要ですね。

因数分解のやり方ですが、一概にこれという言い方は出来ません。
いろいろな式を因数分解してコツをつかむのが良いでしょう。
    • good
    • 2
この回答へのお礼

ありがとうございます。
素数は何とかわかりました。
簡単に言って、素数でないのが因数だと考えても良いのでしょうか?
因数分解は何とか頑張ってみます。

お礼日時:2003/11/13 08:31

ある数Aがある数Bで割り切れるときBを因数といいます。


因数も他の数で割り切れる事があります。
他の数で割れなくなった場合その数を素数といいます。
    • good
    • 4
この回答へのお礼

ありがとうございます。
分かってはいるのですが、両方がこんがらがって…

お礼日時:2003/11/13 08:28

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q因数ってなんでしょうか?

因数がよくわからないので教えてもらいたいです。

7の因数は1つ、30の因数は3つ、462の因数は3つ。

どういう理由でそれらの因数の数が出るのでしょうか?

Aベストアンサー

またまたstomachmanです。今度はきっちり用語を調べましたよ。(最初の回答と重複しますがご容赦あれ。)

(1)かけ算において「因子(いんし)」「因数」「約数」はみんな同じ意味です。
 ある数が、別の数で割り切れるとき、この「別の数」の方を指して「因子」とか「因数」とか「約数」と呼ぶのです。
従って、「ある数」が30ならば、30の因数は(自然数1,2,3,・・・だけに限って言えば)
1,2,3,5,6,10,15,30の8個あることになります。

*なんで、かけ算の話なのに「割り切れる」が出てくるか?(念のためですけど)
 それは、かけ算の反対はわり算だからですね。具体的には「30が5で割り切れる」というのは、式で書けば
30÷5=6(余り0)
ですが、これは
30=6×5
というのと同じ事だからです。

(2)もしどうしても「30の因数は3個だ」と参考書にでも書いてあるのであれば、その本は言葉を間違って使っています。この場合「因数」ではなく、「素因数(そいんすう)」が正しい用語です。「素因数」とは「因数のうちで、素数であるもの」のことです。
 「素数(そすう)」というのは(ご存知でしょうが)「1とその数自身以外に因数がないような数(ただし1と0は除く)」のことで、
2,3,5,7,11,13,17,19,23,....
と無限個あります。(また、素数でない数は「合成数」と言います。)
 どんな数も素数だけのかけ算で表すことができ、その表し方は1通りしかありません。この表し方のことを「素因数分解」といいます。
 だから、30を素因数分解すると
30=2×3×5
であり、30の素因数は2と3と5ですね。他に素因数はありません。
 さらに、1を除く因数は全て、素因数か、素因数同士のかけ算になります。実際、この例では、1以外の因数のうち素因数でないものは6,10,15,30であり、それぞれ素因数2,3,5を使って
 6=2×3
10=2×5
15=3×5
30=2×3×5
と表せますね。これらの因数は素因数のかけ算で表せる合成数なのです。

またまたstomachmanです。今度はきっちり用語を調べましたよ。(最初の回答と重複しますがご容赦あれ。)

(1)かけ算において「因子(いんし)」「因数」「約数」はみんな同じ意味です。
 ある数が、別の数で割り切れるとき、この「別の数」の方を指して「因子」とか「因数」とか「約数」と呼ぶのです。
従って、「ある数」が30ならば、30の因数は(自然数1,2,3,・・・だけに限って言えば)
1,2,3,5,6,10,15,30の8個あることになります。

*なんで、かけ算の話なのに「...続きを読む

Q約数と因数の違い(∈N)

中学校3年で「素因数分解」が教科書に出てきます。
教科書では「因数」「素数」「素因数分解」の順に説明されています。「因数」と小学校で習う「約数」の違いは何ですか?
ほとんど同じなのかと思いますが、「因数」の方は1およびもとの数を含まないのかな??と思ったのです。
だって多項式の因数分解の話では(x^2+2x+4)は実数の範囲では「因数分解できない」っていいますよね。

どなたか正確なところをご存知でしたら教えてください。また出典も教えていただければ幸いです。

Aベストアンサー

laminaeさん、こんにちは。

参考URLに詳しい説明が載っているのですが、
たとえば7の因数は、7だけで、1つです。
約数は、7=1×7なので、1と7の2個です。
30の因数は、
30=2×3×5
と素因数分解できますから、2と3と5の3種類なので、因数は3個。
しかし、約数は、いっぱいあります。
1,2,3,5,6,10,15,30
これ、みんな30の約数ですね。

約数とは、ある整数aが整数bで割り切れるとき、
この整数bを整数aの約数、といいます。
30÷1=30
30÷2=15
30÷3=10
と、どれも割り切れて余りが出ないので、1も2も3も30の約数だ、というわけです。

さて、約数は、どんどん細かく分けることができます。
たとえば、
80÷16=5
なので、16と5はともに80の約数で
80=16×5
また、16=4×4
なので、
80=4×4×5
4=2×2なので
80=2×2×2×2×5
のように分解できます。
もう、これ以上には、分解できませんね。

このように、「もうこれ以上分解できない」状態を
素因数分解された状態といいます。
このとき、80を素因数分解している数字の種類は
2(が4個)と5(が1個)ですね。
この2種類を、80の因数といいます。
80の因数は、2と5、といえます。

約数は、もっといっぱいありますよ。
1,2,4,5、8,10,16、20、40、80
これ、全部、80の約数ですね。

こういう感じです。ご参考になればうれしいです。

laminaeさん、こんにちは。

参考URLに詳しい説明が載っているのですが、
たとえば7の因数は、7だけで、1つです。
約数は、7=1×7なので、1と7の2個です。
30の因数は、
30=2×3×5
と素因数分解できますから、2と3と5の3種類なので、因数は3個。
しかし、約数は、いっぱいあります。
1,2,3,5,6,10,15,30
これ、みんな30の約数ですね。

約数とは、ある整数aが整数bで割り切れるとき、
この整数bを整数aの約数、といいます。
30÷1=30
30÷2=15...続きを読む

Q因数分解って何に役立つの?

高校1年になった娘に付き合って20年ぶりに因数分解の問題を解いてみました。なんだかパズルをやっているようで意外と楽しかったのですが、因数分解や展開って、何かの役に立つのでしょうか?
こんな計算に使うと簡単に出来るよ、とかこういう数字を求めるときに使うものだ、とかありますか?
他にもいろいろな数学の公式とかがありますが、これらが実際何を求めるときに使うものかが知りたいです。

Aベストアンサー

いろいろな考え方があると思いますが・・・

因数分解や展開は、日常生活で簡単な暗算するのに使ったりしますね。No6さんに似てますが。

月収16万だったら年に・・・?とか思ったら、
12×16=(14+2)(14-2)=196-4=192 万かぁ、とか。
上の例は和と差の積の公式ですね。
私は1~20くらいの二乗の数は記憶しているので上のような計算が楽なのですが。

普通の掛け算の筆算も、展開を応用したものですよ。

456×789 = 456×(700+80+9)
 =456×700+456×80+456×9

    456
  × 789
-------
   4104
  36480
 319200
-------
  359784

Qa~2+2a+1の因数は[a+1]だけでなく「1」も「a+1]

も因数である」正しいですか。48の約数は1も48もであるが、1も48も因数といえる」正しいですか。私は大人で、1は素数でないと存じております。

Aベストアンサー

因数分解についてですね。(有理)整数環Zと多項式環Q(X)は構造が似ていることはご存じですよね。整数は割り算ができます。多項式も割り算ができます。このような構造をユークリッド環といいます。整数は素因数の積に一意に分解します。同様に多項式は既約多項式の積に一意に分解します。ですから、整数の性質や用語を多項式の性質や用語として使用することができるのです。「因数(factor)」というのは、48=1×48という掛け算の式で表したとき、右辺の掛け算の式を構成する、1と48のことをいうのです。「約数(divisor)」というのは、48を割り切る数です。因数と約数は意味が似ていますが、使い方が違います。
以上のことを念頭に入れておけば、ピタゴラJrさんの質問に答えることができます。
1も48も48を割り切るので、48の約数です。
48=1×48ですから、1も48も48の因数です。
a~2+2a+1=1×(a+1)^2ですから、1も(a+1)^2もa^2+2a+1の因数です。また、1,(a+1),(a+1)^2はa^2+2a+1の約数です。しかし、a~2+2a+1=1×(a+1)^2は因数分解とは言いません。因数分解は正確には、素(既約)因数分解というべきものです。整数の世界では、1やー1を単元といいます。単元を素因数にしてしまうと、素因数分解の一意性が成り立ちませんね。それと同様に有理数係数多項式環Q[X]の世界での単元は有理数です。有理数を素因数にしてしまうと素因数分解の一意性が成り立ちません。ですから、
2X+4=2(X+2)は因数分解とはいいません。なぜなら、2は単元であり、2X+4は既約多項式だからです。3=1×3を素因数分解とは呼ばないことと同様です。
2a^2+6a+4=(2a+2)(a+2)は因数分解です。なぜなら、(2a+2)と(a+2)はそれぞれ既約多項式だからです。しかし、普通は2a^2+6a+4=2(a+1)(a+2)と書いた方が見栄えが良いので、このように書きます。

ところで有理係数多項式環Q[X]では2X+4は既約多項式ですが、整数係数多項式環Z[X]では既約ではありません。しかし、整数係数多項式環Z[X]では環としての性質を論じるのに、あまり面白くありませんね。

因数分解についてですね。(有理)整数環Zと多項式環Q(X)は構造が似ていることはご存じですよね。整数は割り算ができます。多項式も割り算ができます。このような構造をユークリッド環といいます。整数は素因数の積に一意に分解します。同様に多項式は既約多項式の積に一意に分解します。ですから、整数の性質や用語を多項式の性質や用語として使用することができるのです。「因数(factor)」というのは、48=1×48という掛け算の式で表したとき、右辺の掛け算の式を構成する、1と48のことをいうのです。「...続きを読む

Q因数の定義

中学生の数学の問題を作っており、困っております。


例えばx(x+1)(x+1)の因数は?に対し、
x,x+1,x+2の他にも、x(x+1),x(x+2),(x+1)(x+2),x(x+1)(x+2)は答えになるでしょうか?


また(x+1)^3の因数は、(x+1)の他にも(x+1)^2,(x+1)^3も答えになるでしょうか?

また、12の因数の場合、答えは12の約数(1,2,3,4,6,12)でよろしいでしょうか?

因数の厳密な定義をご存知の方、よろしくお願いいたします。

Aベストアンサー

因数は、対象となる数字または多項式を積に分解したときの
1つ1つの要素です。

数学的(哲学的)には因数は“存在”するのでしょうけど、
表示上の問題と考えるとよいかもしれません。

例えば、12=3×4
と表示できるので、3や4は12の因数です。
同様に、12=1×12
と表示できるので、1や12も12の因数です。
この意味で、12の約数はすべて12の因数です。 ※

12=(-2)×(-6)
とも表示できるので-2と-6も因数です。  ※



>例えばx(x+1)(x+1)の因数は?に対し、
>x,x+1,x+2の他にも、x(x+1),x(x+2),(x+1)(x+2),x(x+1)(x+2)は答えになるでしょうか?
>また(x+1)^3の因数は、(x+1)の他にも(x+1)^2,(x+1)^3も答えになるでしょうか?
答えとしてよいと思います。



※ ただし、因数分解の範囲を十分に考慮しなければなりません。
  素因数分解の一意性を保ちたいのであれば、
   12=1×12=1×2×2×3
  という表示はこのましくないでしょうし、
  負の約数も考えてはいけないのでしょう。
  また、たとえば、複素数まで範囲を広げれば、
   12=(2+2√2i )(2-2√2i)
  のようにもかけますので、12の因数は無数に存在することになります。

  このように、因数の定義はかなりシビアなところがありますので、
  中学校ではその厳密な議論を避けるべきです。
  したがって、たとえば“12の因数は?”“12の因数の個数は?”というような
  “因数の定義”に根差した問題は、
  中学生にはふさわしくないものと私は思います。

因数は、対象となる数字または多項式を積に分解したときの
1つ1つの要素です。

数学的(哲学的)には因数は“存在”するのでしょうけど、
表示上の問題と考えるとよいかもしれません。

例えば、12=3×4
と表示できるので、3や4は12の因数です。
同様に、12=1×12
と表示できるので、1や12も12の因数です。
この意味で、12の約数はすべて12の因数です。 ※

12=(-2)×(-6)
とも表示できるので-2と-6も因数です。  ※



>例えばx(x+1)(x+1)の因数は?に対し、
>x,x+1,x+2...続きを読む

Qイデオロギーって何ですか???

イデオロギーとはどんな意味なんですか。
広辞苑などで調べてみたのですが、意味が分かりません。
どなたか教えてください。

Aベストアンサー

イデオロギ-というのは確かに色んな解釈をされていますけど、
狭義ではそれぞれの社会階級に独特な政治思想・社会思想を指します。

つまり分かりやすく言えば、人間の行動を決定する根本的な物の考え方の
体系です。一定の考え方で矛盾のないように組織された全体的な理論や思想の事を
イデオロギ-と言うんです。

例えば、人間はみんな千差万別であり色んな考えを持っています。
だから賛成や反対といった意見が出てきますね。
しかし、イデオロギ-というのはみんなが認める事象の事です。
イデオロギ-には賛成・反対といった概念がないのです。

例えば、環境破壊は一般的に「やってはいけない事」という一定の考えに
組織されています。つまりみんなが根本的な共通の考え(やってはいけない事)として組織されているもの、これがイデオロギ-なんです。
しかし、社会的立場によってはその「やってはいけない事」を美化して
公共事業と称して環境破壊をする人達もいますけど。
ここでイデオロギ-という概念に対して色んな論説が出てくるわけです。
一応これは一つの例ですけど。

というかこれくらいしか説明の仕様がないですよ~~・・。
こういう抽象的な事はあまり難しく考えるとそれこそ分からなくなりますよ。
この説明で理解してくれると思いますけどね。

イデオロギ-というのは確かに色んな解釈をされていますけど、
狭義ではそれぞれの社会階級に独特な政治思想・社会思想を指します。

つまり分かりやすく言えば、人間の行動を決定する根本的な物の考え方の
体系です。一定の考え方で矛盾のないように組織された全体的な理論や思想の事を
イデオロギ-と言うんです。

例えば、人間はみんな千差万別であり色んな考えを持っています。
だから賛成や反対といった意見が出てきますね。
しかし、イデオロギ-というのはみんなが認める事象の事です。
イデオ...続きを読む

Q√(ルート)の解き方  (急いでます。)

明日、学校で√のテストがあります。
私は登校拒否だったので√の解き方が全く分かりません。
教えてくれる友人も教科書もないので、インターネットで調べて見ましたが、分かりませんでした。
(○は数字です。)
√○=という基本の問題もあるし、√の分数などもあります。
√というのがさっぱりわからないので教えてください。

Aベストアンサー

整数の√の例題と分数の√の例題を作ってみました。
簡単化の仕方を説明つきで書いておきます。

▶ 整数の√

√108
108=2x2x3x3x3→√108=2x3√3=6√3

√88
88=2x2x2x11→√88=2√(2x11)=2√22

のようにルートの中を素因数分解して、同じ因数が2つ物を1つにして√の前に出し、ルートの前同士、ルートの中同士かけて答えとします。

√9216
9216=2x2x2x2x2 x 2x2x2x2x2 x 3x3
√9216=2x2x2x2x2 x3
  =32x3=96

▶ 分数の√

√(108/88)
先ず分数の分子、分母それぞれを因数分解する
108=2x2x3x3x3
88=2x2x2x11
つぎに分子と分母の約分をする
108/88=3x3x3 / 2x11
次に
分子分母に分母が二乗になるような因数を書ける
108/88=3x3x3 / 2x11=2x3x3x3x11 / 2x2x11x11

同じ因数が2つある場合は√の前に因数を括りだす。
√(108/88)=3 √(2x3x11) /(2x11)
     =3(√66)/22

√(6/5)
6/5=2x3/5
=(2x3x5)/(5x5)
√(6/5)=(√30)/5

[要点]
分数のルートは
分母は整数、分子だけルートを含む形
に簡単化する。(分母の有理化とう言う)

整数の√の例題と分数の√の例題を作ってみました。
簡単化の仕方を説明つきで書いておきます。

▶ 整数の√

√108
108=2x2x3x3x3→√108=2x3√3=6√3

√88
88=2x2x2x11→√88=2√(2x11)=2√22

のようにルートの中を素因数分解して、同じ因数が2つ物を1つにして√の前に出し、ルートの前同士、ルートの中同士かけて答えとします。

√9216
9216=2x2x2x2x2 x 2x2x2x2x2 x 3x3
√9216=2x2x2x2x2 x3
  =32x3=96

▶ 分数の√

√(108/88)
先ず分数の分子、分母それぞれを因数分解する
108=2...続きを読む

QWould you like~?とWould you~?の違いは

相手に何かをお願いするときに、
Would you like~?
Would you~?
と両方の言い方があると思うのですが、likeをつけるかつけないかはどのように判断するのでしょうか?
また意味はどう変わるのでしょうか?

Aベストアンサー

Would you~?「~していただけませんか?」は丁寧な依頼表現、Would you like~?「~は如何ですか?」は丁寧な勧誘表現です。

依頼表現で使われるwouldやcouldは、「条件節(if節)の内容を言外に含めた婉曲用法」なのです。つまり、「(もし~できるのであれば)~していただけるでしょうか」と丁寧で控え目な調子を出すことができます。Will you~?やCan you~?はただの助動詞の勧誘表現ですから、wouldやcouldのような婉曲用法はないのです。

Would you like~も同じ婉曲用法で、「(もし私が~を勧めたら)~をお気に召すでしょうか?」という丁寧で控え目な調子の出る勧誘表現なのです。I would like to~「~したい」(~することをできればしたい)という表現もこの用法からきているのです。

Would you like~のlikeは「~を好きである」という他動詞でlikeの後に名詞を目的語として持って来ることができます。例:
Would you like another cup of tea?「もう一杯紅茶如何ですか?」
Would you like going on a picnic?「ピクニックに出かけるというのは如何でしょう?」
Would you like to go on a picnic?「同上」(このto不定詞は名詞的用法)

ご参考になりましたでしょうか。

Would you~?「~していただけませんか?」は丁寧な依頼表現、Would you like~?「~は如何ですか?」は丁寧な勧誘表現です。

依頼表現で使われるwouldやcouldは、「条件節(if節)の内容を言外に含めた婉曲用法」なのです。つまり、「(もし~できるのであれば)~していただけるでしょうか」と丁寧で控え目な調子を出すことができます。Will you~?やCan you~?はただの助動詞の勧誘表現ですから、wouldやcouldのような婉曲用法はないのです。

Would you like~も同じ婉曲用法で、「(もし私が~を勧め...続きを読む

Q夏休みの宿題 税についての作文

夏休みの社会の宿題で、
「税についての作文」というものがでました。
一応、書いてみたので時間がある方は読んでいただけないでしょうか?
枚数は3枚以内ということで、これだと2枚とちょっとくらいです。
題名がまだ決まっていないので、もし何かあればお願いします!


 私は、正直に言うと、今まで「税」というものについてよく知りませんでした。
自分が払っている税金と言うと、消費税くらいしかないし、
その消費税は、何かを買うと付いてくるし、
「税金なんかなくて良いのに。なんで払うんだろう。」と思ったこともありました。
 そこで、税金の使われ方について調べてみました。
すると、税金は、私たちが毎日学校で勉強するために使われていたり、
私たちの生活や安全を守るために使われていることが分かりました。
また、税金によって、医療費が安くなっていたり、ゴミ処理がされているということも分かりました。
 もし、誰も税金を払わなくなったら、どうなるだろうか。
と考えてみると、
私たちが今まで当たり前のように通っていた学校には通えなくなってしまうし、
私たちはこれから安心して暮らしていけません。
税金がなくなっても、毎日学校で勉強をしようとすると、
私たち中学生は、月々約7万9千円、つまり年間94万3千円を払わなければなりません。
他にも、税金がなくなれば、警察・消防費として、国民一人当たり約4万5百円、
ゴミ処理費用として、国民一人当たり約1万7千9百円を払い、
医療費は今よりも高くなります。
これらは、税金を払っている今は、税金によってまかなわれているのです。
そう考えると、税金は私たちにとって、とても必要なものだと思います。
 今まで、「税について知りたい!」とか「税金は必要だ。」と思ったことは
一度もありませんでしたが、今回調べて、税についてよく分かったし、
税金は必要だと思いました。
私たちは、いつも「勉強したくないなあ。」と思いながら学校に通っていますが、
こうして、当たり前のように毎日学校で勉強ができるのも、
税金があるからできるのだと分かりました。
 私たちはまだ、税金を払う立場ではなく、税金を使う立場の方です。
税金によって、私たちは色々な面で支えられています。
日本全国の人々が、税金を払い、
その税金によって、私たちは支えられています。
だから私も、将来、もっと税金を払うようになったら、
他の人たちを支えたいと思います。

夏休みの社会の宿題で、
「税についての作文」というものがでました。
一応、書いてみたので時間がある方は読んでいただけないでしょうか?
枚数は3枚以内ということで、これだと2枚とちょっとくらいです。
題名がまだ決まっていないので、もし何かあればお願いします!


 私は、正直に言うと、今まで「税」というものについてよく知りませんでした。
自分が払っている税金と言うと、消費税くらいしかないし、
その消費税は、何かを買うと付いてくるし、
「税金なんかなくて良いのに。なんで払うんだろ...続きを読む

Aベストアンサー

>消費税くらいしかないし、
>よく分かったし、

この「~し、」というのを書き直しましょう。
作文ではあまり使いたくない言葉使いです。

税金というと、一番身近なのは消費税でしょうか。
良くわかりました。

>だから私も、将来、もっと税金を払うようになったら、
>他の人たちを支えたいと思います。

この部分が???となる文章でした。
税金を払うことに支えるとありますが、何を支えるのかを書く。
または最後の〆の言葉自体を変更してもいいかもしれません。


これくらいでいいと思います。
中学生なので十分ではないでしょか。

Qリベラルとは?

・左派、革新、社会主義
・右派、保守
という分類ができると思うのですが、
リベラルや自由主義は、どう考えたらいいのでしょうか?
よろしくお願いします。

Aベストアンサー

 政治思想は、下記のXY軸に表す事が出来ます。(リベラルを日本語に訳したのが「革新」あるいは左派です。)

 Y軸 Libertarian(自由・市場主義 = 小さな政府) - Statist(統制主義 = 大きな政府)
 X軸 Liberal(革新) - Conservative(保守)
 真中 Centrist(中間主義)

 各派の解説は下のURLの解説部分を参照してください。
   http://meinesache.seesaa.net/category/719933-1.html

 自由主義と言うとリバタリアンの範疇になりますが、アメリカの政治に例えると、レーガン大統領より前の共和党政策が旧保守主義(右派リバタリアン)で、それ以後を新保守主義(ネオコン)といい保守と名乗っていますが、実態は左派リバタリアン(左派が保守に転換し、現状を保守する為に革新的手法(戦争など過激な改革を許容する)を執ると言う主義)です。

 自由主義の反対となる統制主義も左派だと共産主義や社会主義、比べると右派に成るイギリスの「ゆりかごから墓場まで(高福祉政策)」などが有ります。

 簡単に言うと、積極的に変えようとするのが左派で、変わらないように規制するのが右派です。そして変える方向(変えない方向)が自由か統制かで分類できます。

 日本には明確に保守を謳う政党が無いので、イメージがわき難いのかも知れませんが…。
 (自民・民主党は中道で、共産党は左派統制主義ですから…。)

 政治思想は、下記のXY軸に表す事が出来ます。(リベラルを日本語に訳したのが「革新」あるいは左派です。)

 Y軸 Libertarian(自由・市場主義 = 小さな政府) - Statist(統制主義 = 大きな政府)
 X軸 Liberal(革新) - Conservative(保守)
 真中 Centrist(中間主義)

 各派の解説は下のURLの解説部分を参照してください。
   http://meinesache.seesaa.net/category/719933-1.html

 自由主義と言うとリバタリアンの範疇になりますが、アメリカの政治に例えると、レーガン大統領より前の共...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング