A 回答 (1件)
- 最新から表示
- 回答順に表示
No.1
- 回答日時:
曲面x^2+z^2-10y=0は(原点を頂点とし,)y軸を回転軸とする回転放物面ですから,点とy軸(回転軸)を含む平面上で考えれば,座標平面上で点と放物線を距離を考えるのと同じです。
つまり,その点をy軸のまわりに回転させてxy平面上にくる点を求めて,放物線10y=x^2との距離を求めればよいわけです。(x,y,z)における法線ベクトルは,(x,-5,z)ではなくて,(x,-5/{(x^2+z^2)^(1/2)},z)ではないでしょうか。それとも,点の座標が与えられているのでしょうか。
ありがとうございます。
法線ベクトルについてですが、与曲面のパラメータを
(x, 0.1*(x^2+z^2), z)とおいてやれば、法線ベクトルはxで偏微分した(1, 0.2*x, 0)と
zで偏微分した(0, 0.2*z, 1)の外積として求めたのですが違うのでしょうか?点の座標は与えられてません。
ほんとにバカですみませんが、10y=x^2と点(x,y)の距離ってのはどうやって求めたらいいのでしょうか?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・【お題】絵本のタイトル
- ・【大喜利】世界最古のコンビニについて知ってる事を教えてください【投稿~10/10(木)】
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・ハマっている「お菓子」を教えて!
- ・最近、いつ泣きましたか?
- ・夏が終わったと感じる瞬間って、どんな時?
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
至急!y=2X^2を変形(平方完成)...
-
tの値が変化するとき、放物線y=...
-
y=ax^2+bx+cのbは何を表してい...
-
頂点が点(2,6)で、点(1,4)を通...
-
二次関数
-
①グラフが次のような放物線とな...
-
噴水はなぜ放物線をえがくので...
-
日常生活で放物線や双曲線の例...
-
楕円の書き方
-
放物線の方程式のbの値はグラフ...
-
2次関数と似ているグラフについて
-
mathematicaの軸の太さの変更に...
-
2:1正楕円とは何ですか?
-
楕円の焦点,中心を作図で求め...
-
最大値・最小値
-
添付画像の放物線はどんな式で...
-
中国から高2の留学生です。二次...
-
半楕円とは何ですか?
-
高校2次関数グラフ
-
放物線の上を滑らずに転がる円...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
至急!y=2X^2を変形(平方完成)...
-
噴水はなぜ放物線をえがくので...
-
y=ax^2+bx+cのbは何を表してい...
-
楕円の焦点,中心を作図で求め...
-
楕円の書き方
-
双曲線の焦点を求める時はなぜ√...
-
添付画像の放物線はどんな式で...
-
日常生活で放物線や双曲線の例...
-
【 数I 2次関数 】 問題 放物線...
-
放物線y=2x² を平行移動した曲...
-
tの値が変化するとき、放物線y=...
-
2:1正楕円とは何ですか?
-
この問題は「円の中心の軌跡を...
-
数3 放物線 y^2=4pxという式を...
-
【至急】困ってます! 【1】1、...
-
2次関数と似ているグラフについて
-
放物線の形は1種類?
-
放物線y=x^2-3xと y=0,y=4 で囲...
-
頂点が点(2,6)で、点(1,4)を通...
-
2つの楕円の交点の求め方が分...
おすすめ情報