痔になりやすい生活習慣とは?

物質表面の電荷密度は表面電場を誘電率で割ることで得ることができます。

導電体の場合には、電気力線が表面に対して垂直なので計算は簡単ですが

http://www.f-denshi.com/000TokiwaJPN/32denjk/fig …

この絵に描かれてあるように、誘電体の場合には電気力線が90°以外の角度でも
入ることができます。

となると、誘電体上の電荷密度を計算するためには
表面に対して90°ではなく電気力線に沿った角度での電場、
すなわち電場の長さを誘電率で割る必要があるのでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (5件)

>> 球の表面のうち電界の上流側と下流側では「表」が反転しますから、左半球と右半球は分極の向きが同じでも逆極性の分極電荷が生じます。



> ここの意味ももう少し詳しく説明していただけないでしょうか?

例えば電界の向きが左から右向きで分極の向きも左から右向きなら、左に負、右に正の分極電荷を生じます。誘電体球の左半球は外側が左、右半球は外側が右ですから、左半球の表面には負の分極電荷が、右半球の表面 には正の分極電荷が生じます。
    • good
    • 0

> ρfというのは3次元的な電荷密度ですよね?



仰る通り、ρfは3次元的な真電荷密度です。
お礼欄リンク先のようなことをお考えなら、求めたいものは表面電荷密度で、真電荷ではなく分極電荷の密度でしょうか。No.3で提示したdiv E = ρf/εは空間のある点で成り立つ式なのでεは一つです。想定されているようなモデルを考えるには積分しなくてはなりません。しかもこの式はMacroscopicなので分極電荷を扱えません。No.2-3の答えは適切でなかったと思います。

説明を簡単にする為に、外側の空間を真空だとします。 
誘電体球内の分極Pは誘電体内部では打ち消し合っていて、誘電体の表面だけに分極電荷として現れます。
誘電体球の内側の電界は、この分極によって外側の電界の1/εrに弱まっています。(εrは誘電体球の比誘電率)
分極Pは、外側の電界と内部の電界の差に定数ε0を掛けたものです。
即ち、誘電体球の外側の電界をEx、内側の電界をEiとすれば、
P=ε0(Ex-Ei)
Ex=εrEi
です。

もしPとExの向きが同じなら、Eiも同じ向きです。この場合εrはスカラーになります。逆に言えば比誘電率をスカラーと考えることができるような場合には、P、Ex、Eiは同じ向きです。
球の表面のうち電界の上流側と下流側では「表」が反転しますから、左半球と右半球は分極の向きが同じでも逆極性の分極電荷が生じます。ということは、真ん中付近には分極電荷は生じないことになります。ですから「面積当たりの電荷」は面と電界が為す角を考慮しなくてはなりません。お礼欄のリンク先で法線ベクトルとの内積を取るのはこのためです。
「左半球と右半球には逆向きの電荷が生じ、真ん中付近には電荷が生じない」
こと自体は球が導体球で導体球表面の真電荷の分布を求めるのだとしても同じことです。
一般にはP、Ex、Eiの向きは夫々違います。ですからεrはスカラーではなくテンソルになります。この場合はPとExがどのような角度を持つかによって表面電荷密度は変わって来ます。

**** 補足説明 ****
誘電体球内の電界をEiとすれば、誘電体球内の分極Pと比誘電率εrの関係は、
P=D-ε0Ei
但し、D=εrε0Ei
で定義されます。
電束密度Dは誘電体球の中でも外でも同じですから、誘電体球の外の電界をExとすれば、
D=εrε0Ei=ε0Ex
従って
P=ε0(Ex-Ei)
但し、Ex=εrEi
となります。
    • good
    • 0
この回答へのお礼

ありがとうございます。

>球の表面のうち電界の上流側と下流側では「表」が反転しますから、左半球と右半球は分極の向きが同じでも逆極性の分極電荷が生じます。


ここの意味ももう少し詳しく説明していただけないでしょうか?

電気力線が反平行のときには、表面電荷に寄与するけれど
並行のときには打ち消しあって表面電荷を誘起しないということですか?

お礼日時:2012/08/20 11:01

No.2の回答にタイプミスがありました。


div E = ρf/εです。
Eは電界、ρfは真電荷密度、εは誘電率です。
    • good
    • 0
この回答へのお礼

ありがとうございます。

ρfというのは3次元的な電荷密度ですよね?
私が行っているのは2次元的な表面電荷密度のことです。

http://maxwell.jp/nakajima/elemag/e-polarization …

のページには分極ベクトルの物体表面の法線ベクトルの内積になっているため
表面と水平方向の電場は表面電荷密度とは無関係だと思うのですが
合っていますか?

それと教えて下さった
div E = ρf/ε
の式と上記URLの式には誘電率が一つしか含まれていないのですが
物体の誘電率と媒質の誘電率、二つ必要になると思うのですが
これはどちらの誘電率を用いれば良いのでしょうか?

お礼日時:2012/08/18 11:11

> 物質表面の電荷密度は表面電場を誘電率で割ることで得ることができます。



出典は何処でしょうか?
Macroscopicの電磁方程式では、
 div E = ρf/E
ですから、真電荷密度は電界の発散に誘電率を掛けた物になります。

媒質の中に同量の真電荷があったとしても媒質の誘電率が高ければそれだけ電界が弱くなっています。
逆に同じ電界が観測されたとしても、媒質の誘電率が高ければそれだけ沢山の真電荷がある筈だということになります。
電界の強さから真電荷密度を求めるには少なくとも誘電率を掛けなくてはなりません。

物質が導体なら内部の電界はゼロですから電界の発散は表面外側だけを考えれば済みますが、
物質が絶縁体(=誘電体)の場合には、物質内部の電界も含めて発散を考えなくてはなりません。

参考URL:http://en.wikipedia.org/wiki/Maxwell's_equations
    • good
    • 0

うーん。


テンソルとか必要になりそうな気がする。
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q誘電体内の電界が分かりません

「真空中の誘電率をε0とする。面積Sの2枚の金属版が間隔dで置かれている並行平板コンデンサがある。このコンデンサにVの電圧を印加している時の平板間の電界をE0とする。今、電圧を印加したまま、比誘電率εsの誘電体を、平板間を満たすように挿入すると、(電源から新たに電荷が供給される前の)平板間の電界はEとなった。誘電体内で静電誘導が起こったことによって発生する内部電界をEpとおくと、
  E = E0 - Ep (1)
が成り立つ。ここで分極ベクトルを考えると、その大きさは平板における分極電荷(面積)密度σpとなる。よって電気感受率Xを用いると
  σp = ε0XE (2)
で表せる。この式を(1)に代入すると
  σp/(ε0X) = E0 - σp/ε0 (3)
となるから、
  σp = ε0XEo/(1+X) (4)
となる。」
という説明があるのですが、なぜ(3)式右辺の第二項がσp/ε0になるのか分かりません。

真空中に存在する導体について、その表面電荷密度がσであるなら、表面での電界は、その点に垂直な方向にσ/ε0である。ということはガウスの法則から導かれると思うのですが、なぜ比誘電率εsの誘電体内において電界Epがσp/ε0となるのか分かりません

ご回答よろしくお願いします

「真空中の誘電率をε0とする。面積Sの2枚の金属版が間隔dで置かれている並行平板コンデンサがある。このコンデンサにVの電圧を印加している時の平板間の電界をE0とする。今、電圧を印加したまま、比誘電率εsの誘電体を、平板間を満たすように挿入すると、(電源から新たに電荷が供給される前の)平板間の電界はEとなった。誘電体内で静電誘導が起こったことによって発生する内部電界をEpとおくと、
  E = E0 - Ep (1)
が成り立つ。ここで分極ベクトルを考えると、その大きさは平板における分極電荷(面積)密度...続きを読む

Aベストアンサー

 自分も最初は、けっこう戸惑いましたが、結局どんな電荷密度から発生した電場も真空を伝わるのだ、というのが古典電磁気学の物質モデルだからです。

 古典電磁気学において電場は、真空によってしか伝播されません。誘電体があるとそこの真空の性質が、誘電体という物質の性質に置き換わって誘電率が、ε0(1+χ)に変化するように見えますが、これは現象論だとする立場です。

 何故なら誘電体も原子や分子から出来ており、原子や分子の分極は電荷密度とみなせますが(これはご存知と思います)、分極電荷による電場が、原子や分子を発生源とする以上、それを伝えるのは、原子や分子間の「真空」です。だから、比誘電率εsの誘電体内においても、

  Ep=σp/ε0

なんですよ。後は、

  σp = ε0XE (2)

などが都合よく成り立つように、電気感受率χや比誘電率εsを「数学的に」定義するだけです。要するにχやεsを、形式的に物質定数とみなせる形に、定義しただけなんです。

Q導体表面の電界

現在電磁気学を勉強している者です。
今回は、導体表面の電界について質問させて頂きます。
演習書を解いていたところ、下のようにわからなくなりました。

問題について書くと、

(某問題1)平行板形コンデンサの二枚の平行導体板に面密度±σが一様に分布している。。。。。以下省略。

で、σのつくる電界はガウスの法則から、
E=σ/ε0

(某問題2)接地された無限に広い平面の導体から距離aの位置に電気量Qの点電荷がある。。。。。以下省略。

で、解いていく最中、この平面の表面に誘起される面密度をσとし、σのつくる電界をガウスの法則で求めるが、解答をみると
E=σ/2ε0

(某問題3)無限に広い導体平面の上に一様な面密度σの電荷が分布している。。。。。。以下省略。

で、解答中、σによる電界は平面に垂直でその大きさは、
E=σ/ε0

(某問題4)液体の誘電体があり、その液中に導体の板が二枚がある距離をもって向き合っている。そして、導体間に電位差Vがある。2導体の引き合う力を求めよ。

で、+電極の真電荷密度をσ、それに接する液体面の分極電荷密度
をσpとすると、-電極にはそれぞれ、-σ、-σpの電荷が有る。+電極の力を求めるには-電極の-σと-σpがσに及ぼす力を考えればよい。-σと-σpだけがつくる電界は
E=(σ+σp)/2ε0

自分なりに推測したところ、

某問題1と3は、表面に垂直な微小円筒を仮想閉曲面とし、ガウスの法則を適用する。
導体内部では電界はゼロで、導体の外部に出ている閉曲面の部分を考えればよく、また、側面はE・dS=0。
従って、積分が残るのは上面だけであり、E=σ/ε0

某問題2と4では、微小円筒の仮想閉曲面が平面を貫いており、上の1と3における積分が上面と下面になり、
E=σ/2ε0

と考えました。

私の質問は、
・某問題1~4のEの求め方は私の推測で正しいでしょうか?
次に、私の推測が正しいかどうかわかりませんが、
・なぜ、2と4の問題では、下面の積分も残るのでしょうか?
 問題の条件文はそのまま上に書きましたが、私が何度読んでも、4つとも同じ条件に見えてしまいます。
この見極め方を教えて頂きたいです。

よろしくお願いします。

現在電磁気学を勉強している者です。
今回は、導体表面の電界について質問させて頂きます。
演習書を解いていたところ、下のようにわからなくなりました。

問題について書くと、

(某問題1)平行板形コンデンサの二枚の平行導体板に面密度±σが一様に分布している。。。。。以下省略。

で、σのつくる電界はガウスの法則から、
E=σ/ε0

(某問題2)接地された無限に広い平面の導体から距離aの位置に電気量Qの点電荷がある。。。。。以下省略。

で、解いていく最中、この平面の表面に誘起される面密度...続きを読む

Aベストアンサー

こんにちは。
あなたの疑問は、おそらく次の違いを明確にしていないことから
生じたものではないでしょうか。
導体平板が1枚か、2枚か、によって、その周囲にできる
電場の様子が違います。
(1)1枚の無限に広がった平板導体の場合
     E=σ/2ε
  ___________
|_+__+__+__+__|  電荷の面密度は+σとする。

     E=σ/2ε

(2)正負電荷を帯びたの2枚の無限に広い平行平板導体の場合
     E=0
  ___________
|_+__+__+__+__|  電荷の面密度は+σとする。

     E=σ/ε
  ___________
|_-__-__-__-__|  電荷の面密度は-σとする。

     E=0

(1)の電場の強さはガウスの法則で求まります。
それはあなたが推測された通りです。

(2)では、+の平板が作る電場と、-の平板が作る電場とを
重ね合わせることによって、そこに生じている電場を求めます。
2つの平板の間では、2つの電場は向きが同じなので、
強めあう重なりになります。
2つの平板の外側では、2つの電場は向きが逆なので、
弱めあう重なりになります。

こんにちは。
あなたの疑問は、おそらく次の違いを明確にしていないことから
生じたものではないでしょうか。
導体平板が1枚か、2枚か、によって、その周囲にできる
電場の様子が違います。
(1)1枚の無限に広がった平板導体の場合
     E=σ/2ε
  ___________
|_+__+__+__+__|  電荷の面密度は+σとする。

     E=σ/2ε

(2)正負電荷を帯びたの2枚の無限に広い平行平板導体の場合
     E=0
  ___________
|_+__+__+...続きを読む

Q電場のエネルギー密度と静電エネルギー

電磁気学の質問です。

電場のエネルギー密度 1/2 ε_0 E^2 を空間の全体積で積分すると
静電エネルギーになるという式変形は追えるのですが、
この2つの具体的な関係がよくイメージ出来なくて困っています。
静電エネルギーというと、コンデンサーにたまるエネルギーで、
導体を帯電する時の仕事と理解してるのですが、
何かこれだけでは足りない気がしていて…。

もし、よろしければ、どなたかアドバイスいただけませんか?
よろしくお願いします。

Aベストアンサー

>静電エネルギーというと、コンデンサーにたまるエネルギーで、
>導体を帯電する時の仕事と理解してるのですが、
確かにその通りです。
コンデンサーに限らず、電荷Qを持っている導体に対しても無限遠との電位差をVとして静電容量C=Q/Vと言う物を定義でき、静電エネルギーUはU=1/2*QVとなります。その物体の周りの空間を微少な領域に分割し、ガウスの法則を適用して計算をガリガリ進めるとUは1/2*ε_0 E^2の全空間積分と表せます。(導体であれば内部でEは0なので、導体を除いた空間の積分)
この物理的意味を考えてみると、電荷Qの導体自身が静電エネルギーUを持っている物だと考えていたのに、その周りの空間(場)にエネルギーが蓄えられている、という見方も出来るのです。
もっと言えば、電荷eがあるとその周りの空間にある種の歪み(電場)が生じ、その歪みがエネルギーを蓄えていると考えられるわけです。

同じように磁場についても、電荷が動けばその周りの空間に歪み(磁場)が生じ、場自身がエネルギー密度1/2*μ_0 B^2 を持つことが分かります。
磁場や電場による力についても色々式をいじくっていくとマックスウェルの応力と呼ばれる空間(場)に力が働くという表示も得られたりします。

結局何が言いたいのかというと、電磁気学というのは場という考え方に基づいて話を展開することができ、その立場の元では静電エネルギーというのは場そのものがエネルギーを蓄えていると考えられると言うことです。

>静電エネルギーというと、コンデンサーにたまるエネルギーで、
>導体を帯電する時の仕事と理解してるのですが、
確かにその通りです。
コンデンサーに限らず、電荷Qを持っている導体に対しても無限遠との電位差をVとして静電容量C=Q/Vと言う物を定義でき、静電エネルギーUはU=1/2*QVとなります。その物体の周りの空間を微少な領域に分割し、ガウスの法則を適用して計算をガリガリ進めるとUは1/2*ε_0 E^2の全空間積分と表せます。(導体であれば内部でEは0なので、導体を除いた空間の積分)
この物理的意味...続きを読む

Q導体球の表面の電荷密度

直径100mmの導体球に5×10^-7[C]の電荷が与えられている。

この時、表面の電荷密度はどうもとめるのですか?そもそも表面の電荷密度ってどういうことかわかりません。電荷は導体に一様に分布しないんですか?

Aベストアンサー

 どういう状況下にいらっしゃるのか、わかりませんが、以下のような説明は、省略されたのかな?、という気がしました。

(1)表面電荷
 自由電子を持ち、(導体内では)自由電子が、かけられた電場に沿って自由に動ける。これが導体の定義だったと思います。ここで自由電子は、もともと導体内の原子に含まれていたものであり、導体全体としては電荷量ゼロですが、この理由から、導体に電場をかければ電流が流れます。

 導体に外から電荷を与えた場合、導体の先の性質から、これは余剰な自由電子とみなせます。要するにいつでも電流として移動できます。
 無限に広い導体を考え、その一部に集中して電荷を与えたとします。電荷は電場を作るので、電荷どうしは電場によって反発します。電場に沿って自由に動けるのが自由電子です。集中して与えた電荷は拡散して行くはずです。この過程を、

  (a)電荷保存則
  (b)ガウスの法則
  (c)一般化されたオームの法則

を組み合わせて計算すると、電荷はその反発力のために無限の彼方へ逃走し、導体内の電荷はゼロになる、という結果になります。もちろん抵抗(電気伝導率)があるので、ゼロになるまでの時間はゼロではありませんが、電場と抵抗の比から、実際上はほぼ一瞬で、そうなると言えます。

 もちろん無限に広い導体が現実にない以上、これは仮想の計算です。しかし有限の表面を持つ導体でも、上の理由から電荷は拡散するはずなので、現実の導体では、与えた電荷は一瞬で、表面のみに貯まるようになり、導体内部の電荷はゼロになるだろうと予想できます。これが表面電荷です。
 表面電荷はある厚みを持つはずですが、非常に薄いと考えられるので、ふつうは電荷の面密度(C/m^2)で近似します。


(2)経緯
 電気の開発者たちは、(a)(b)(c)を知っていた訳ではないです。しかし当時は頻繁に帯電した導体球などを用いて、クーロンの実験などを行い、最終的にはガウスの法則を導いたりしています。その過程で表面電荷に気づき、後に計算で確認されたのが実情と思えます。


(3)という訳で
 という訳で、与えた電荷が表面電荷になる事さえ経験事実として認めれば、別に途中経過を計算しないでも、球は一様な形状と材質なので、一様な表面電荷になるはずだ、という事になります。
 電気の最初に出される問題は、機構さえ理解していれば、常識的考えで解けるものが、けっこうあります。この問題で言えば、表面電荷に納得しているか?、を問うているようにも深読みできます。表面電荷の説明があったとすればですが・・・。

 どういう状況下にいらっしゃるのか、わかりませんが、以下のような説明は、省略されたのかな?、という気がしました。

(1)表面電荷
 自由電子を持ち、(導体内では)自由電子が、かけられた電場に沿って自由に動ける。これが導体の定義だったと思います。ここで自由電子は、もともと導体内の原子に含まれていたものであり、導体全体としては電荷量ゼロですが、この理由から、導体に電場をかければ電流が流れます。

 導体に外から電荷を与えた場合、導体の先の性質から、これは余剰な自由電子とみなせます。...続きを読む

Q誘電体に働く力がわかりません

「面積S、横幅Lの導体平板が2枚、間隔dを空けて存在する並行平板コンデンサがある。このコンデンサに電圧Vを印加しながら、コンデンサの右端からxのところまで、誘電率εの誘電体で満たした。真空中の誘電率をε0として、誘電体に働く力Fの方向を求めよ。」
という問題がわかりません。

コンデンサに電荷Qを充電して、電源を外し、誘電体を入れる場合には、コンデンサの静電エネルギーW=(Q^2)/2Cであることから
  F = -∂W/∂x > 0
よって誘電体に働く力の向きはxの増加する方向(コンデンサに引き込まれる方向)だと思いました。

ですが、電圧Vを印加したままの状態だと、コンデンサの静電エネルギーW=C(V^2)/2なので
  W = {εSx/(d×L)+ε0S(L-x)/(d×L)}(V^2)/2
  F = -∂W/∂x
= SV^2/(2d×L)(ε0-ε)<0
よって誘電体に働く力の向きはxの減少する方向(コンデンサから追いやられる向き)だと思いました。
これであっているのでしょうか?

Aベストアンサー

考え方が間違っている。

コンデンサの静電エネルギーの変化と誘電体の運動エネルギーの和は保存しません。
保存量でないためF=-∂W/∂xとはできません。

電源がつながっている状態では電源自体が仕事をするのでその影響を考えないといけないのです。
電源がした仕事=コンデンサの静電エネルギーの増加+誘電体の運動エネルギーの増加
になります。
誘電体が中に入った時、コンデンサの静電エネルギーは増大しますが電源の行った仕事はそれ以上に大きいため誘電体の運動エネルギーは増大します。
(電荷量の増加⊿Qとすると電源の行った仕事はV⊿Qとなります。コンデンサの静電エネルギーの増大は(1/2)V⊿Qですので誘電体に(1/2)V⊿Qの仕事がなされるのです。)

Q分配関数(状態和)がわかりません。

統計力学とかで出てくる分配関数(状態和)がありますが、物理的な意味がよくわかってません。
Σexp(-β・ei)とありますがどういう意味なんでしょうか?

またある問題でエネルギー準位ε=(n+1/2)hνのN個の独立な調和振動系子の系があり
この調和振動子一個に対する状態和が
Z=1/{2sinh(hν/2kB・T)}
となることを示せという問題があるんですが問題の意味すらよくわかりません。
一個に対する状態和?という感じです。
どうかお願いします。

Aベストアンサー

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというように表すことが出来ますね。
このときの状態和は
 Z=ΣP(x)
  =P(1)+P(2)+…+P(6)
  =6*1/6
  =1
ということになります。

>速度やモーメントならしっくりきますが状態というのは一体何なんでしょうか?
さいころで言うと状態は「1の目が出ること」などに対応します。
この場合は6つの状態を取り得ますね。

>一個に対する状態和?
粒子が一個であっても e_n =(n+1/2)hν という結果を見れば、
基底状態 e_0 = hν/2 の状態にあるかもしれないし、
励起状態の1つ e_1 = (1+1/2)hν = 3/2*hν のエネルギー状態にあるかもしれない、
というようにとり得る状態は1つではないことがわかります。
あとは、先のさいころの例と同様に
e_0 の状態にある確率が exp(-βe_0)
e_1 の状態にある確率が exp(-βe_1)
   :
ですからこれらの確率の無限和をとるだけです。


この質問とは関係ないですが、
その後、相対論の理解は進みましたか?

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというよう...続きを読む

Q一分子の基底状態と励起状態の縮退度の求め方

1辺aの立方体に質量mの内部構造のないNコの同種粒子からなる気体がある。
一粒子のエネルギー準位は次のように書ける。
E=h・h(nx・nx+ny・ny+nz・nz)/(8ma・a)
hはプランク定数。nx,ny,nzは自然数。

という問題で
「一分子の基底状態と励起状態の縮退度はそれぞれいくらか」
というのがテストで出たんですがわかりませんでした。
答えあわせをしてくれないので困ってます。
どなたかわかる方いませんか?教えてください(泣

Aベストアンサー

例によって答を教えてくれない先生ですか.
どうも困ったもんですね~.

同じエネルギーの値に対して状態がいくつあるかが縮退度です.
状態は 自然数の組 nx, ny, nz の組で指定されます.

最低エネルギーの状態(基底状態)はもちろん,nx = ny = nz = 1 の
ただ1通りだけ.
したがって基底状態の縮退度は1.

最初の励起状態は,nx,ny,nz のうち1つが2,残り2つが1というやつで
nx^2 + ny^2 + nz^2 = 6
ですね.
nx,ny,nz のうちどれかが2だというのだから,3通りの可能性があります.
すなわち,縮退度は3.

2番目の励起状態は,nx,ny,nz のうち2つが2,残り1つが1というやつで,
これも3通りの可能性があるから,縮退度は3.

つまり,エネルギーを決めると,nx^2 + ny^2 + nz^2 が決まるので,
これに対応する nx,ny,nz の選び方の数が縮退度です.
一般の nx^2 + ny^2 + nz^2 を指定して選び方の数を求めるのはちょっと
複雑そうです.

幾何学的には,nx,ny,nz の3次元空間で,球の半径 nx^2 + ny^2 + nz^2 を
決めたとき,その球面が通る格子点の数はいくつか,と言う問題になっています.

通常は,a が十分大きいとして,エネルギーの連続極限をとってしまいますが,
そこらあたりまで要求されているんでしょうか?

それから,もし粒子が電子だとすると,nx,ny,nz を指定しても,
その他にスピンの自由度2があります.
スピンまで考慮すれば,縮退度は上の計算の2倍になります.

例によって答を教えてくれない先生ですか.
どうも困ったもんですね~.

同じエネルギーの値に対して状態がいくつあるかが縮退度です.
状態は 自然数の組 nx, ny, nz の組で指定されます.

最低エネルギーの状態(基底状態)はもちろん,nx = ny = nz = 1 の
ただ1通りだけ.
したがって基底状態の縮退度は1.

最初の励起状態は,nx,ny,nz のうち1つが2,残り2つが1というやつで
nx^2 + ny^2 + nz^2 = 6
ですね.
nx,ny,nz のうちどれかが2だというのだから,3通りの可能性があります.
...続きを読む

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Q誘電率について

「高い誘電率を有するが電気的には絶縁体(プラスチック・セラミック・油)」とある本に書かれていたのですが、高い誘電率の意味がまったくわかりません。

誘電率とはどういうものなのでしょうか?是非教えてください。

導体、半導体、絶縁体についてもあまりくわしくないようなレベルです。よろしくお願いします。

Aベストアンサー

>誘電体とはどういうもので、普段の生活でどういう風に使われている等

そうですねぇ。極端なことを言いますと、どんな物質でも大なり小なり電子が引っ張られる効果はあるのでその意味では、電気を通さない物質はみんな誘電体という見方もできます。

ただ一般に「誘電体」というと特にその効果が大きい物質に対して言うことが多いですね。
誘電体で身近な物というのは結構難しくて大抵は部品として何かの中に組み込まれています。


・電子ライター(けずって火花を出すのではなく、カチッという音と共にスパークが飛ぶやつ)
 ->誘電体を打撃すると揺さぶられて高電圧が発生する

・コンデンサー...ありとあらゆる電気製品に含まれている部品で電気を蓄えるもの

・超音波モーター...オートフォーカスカメラでレンズを駆動してピントを合わせるモーター

・メガネや望遠鏡、双眼鏡...レンズの表面にコーティングして光の反射を防止する為に使う

などなど上記はほんの一例ですが実に色んな用途に使われています。

では。

Q同心球導体球の接地について

同心球導体球の接地について、過去に質問されていなかったのでおねがいします。
同心球導体球において、外側の球に電荷Qを与え、内側の球を接地した場合、電界はどのようになるのでしょうか?
(内側の球の半径a、外側の球の内径b、外径cです。)
回答は、
a<r<b、c<rの場合についてお願いします。

Aベストアンサー

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷) + Q - Q'(外側の球の表面電荷) = Q - Q'
  半径 r の球面上の電界を E1(r) とすれば、Gaussの定理より、4*π*r*E1(r) =( Q - Q')/ε → E1(r) = ( Q - Q' )/( 4*π*ε*r^2 ) ---[1]
  半径 r の球面上の電位を V1(r) とすれば、V1(r) = ∫[r~∞] E1(r) dr = ( Q - Q' )/( 4*π*ε*r )
  外側の球の表面電位は V1 = V1(c) = ( Q - Q' )/( 4*π*ε*c )

  内球と外球の間にある半径 r ( a<r<b ) の球面を考えると、その球面に含まれる電荷は、内側の球の表面電荷 -Q' だけだから、
  半径 r の球面上の電界を E2(r) とすれば、Gaussの定理より、4*π*r*E2(r) = - Q'/ε → E2(r) = -Q'/(4*π*ε*r^2) --- [2]
  半径 r の球面上の電位を V2(r) とすれば、V1 - V2(r) =∫[r~b] E2(r) dr = -Q'/(4*π*ε)*( 1/b - 1/r ) 。
  式[3]から、V1 =( Q-Q' )/( 4*π*ε*c ) なので、V2(r) = V1 + Q'/(4*π*ε)*( 1/b-1/r ) = ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/r )
  内側の球は接地されているので、V2(a) = 0  →  ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/a ) = 0
  したがって、Q' = Q/{ c* ( 1/a - 1/b + 1/c ) } = Q/{ 1 + c*( 1/a - 1/b ) } --- [3]

(3)電界分布
  式[3]を式[1],[2] に代入すれば
  E1(r) = ( Q-Q' )/( 4*π*ε*r^2 ) = Q*[ 1 - 1/{ 1 + c*( 1/a - 1/b ) } ]/( 4*π*ε*r^2 ) = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  E2(r) = -Q'/(4*π*ε*r^2) = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(4)まとめ
  a<r<b のとき、E = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  c<r  のとき、 E = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷...続きを読む


このQ&Aを見た人がよく見るQ&A