No.4ベストアンサー
- 回答日時:
>f(x)=∫[0→1]{|t-x|(t+x)}dx
dxはdtの間違いでしょう!
f(x)=∫[0→1]{|t-x|(t+x)}dt
であるとして回答します。
問一
f(1)=∫[0→1]{|t-1|(t+1)}dt
積分範囲0≦t≦1より -1≦t-1≦0であるから
|t-1|=1-t
f(1)=∫[0→1]{(1-t)(t+1)}dt
=∫[0→1](1-t^2)dt
=[t-(1/3)t^3][0→1]
=1-(1/3)
=2/3
問二
f(x)=∫[0→1]{|t-x|(t+x)}dt
x>1のとき
積分範囲0≦t≦1より 0<x-tであるから |t-x|=x-t
従って、x>1のとき
f(x)=∫[0→1]{(x-t)(t+x)}dt
=∫[0→1](x^2-t^2)dt
=[tx^2-(1/3)t^3][t:0→1]
=x^2-(1/3)
No.3
- 回答日時:
f(x)=∮(0-1) {|t-x|(t+x)}dtで解くと、
まずxを(1)0<=x<=1,(2)x>1に場合分けします
(1)0<=x<=1のとき(問1)
f(x)=∮(0-x) {|t-x|(t+x)}dt +∮(x-1) {|t-x|(t+x)}dt
(2)x>1のとき(問2)
0<=t<=1(tの積分範囲)で常にt-x<0なので、|t-x|=-t+xより
f(x)=∮(0-1) {(-t+x)(t+x)}dt
No.2
- 回答日時:
f(x)=∫0to1 {|t-x|(t+x)}dt ですかね?
0 から 1 の定積分を、0からxまでと、xから1までに分けて、
f(x) = ∫0tox (x-t)(t+x)dt + ∫xto1 (t-x)(t+x)dt
あとは普通に計算できます。
(上記はxの値によらず成り立つ)
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数学の f(f(x))とはどういう意...
-
f(x) g(x) とは?
-
数学 fとf(x) の違いについて
-
フーリエ級数について
-
因数分解
-
次の微分可能性を調べよという...
-
なんで(4)なんですけど 積分定...
-
yとf(x)の違いについて
-
微分
-
f(x)=xe^-2xの極大値
-
関数 f(x) = e^(2x) につい...
-
区分求積法の公式 lim(n→∞)1/nΣ...
-
方程式の解について
-
この問題の答えと解き方教えて...
-
次の関数の増減を調べよ。 f(x)...
-
f(x)=sin(x)/x って、とくにf(0...
-
|a→|^2|b→|^2≧(a→⋅b→)^2 の証明...
-
二次関数 必ず通る点について
-
微分、等式を満たす二次関数
-
数学の極限でわからないところ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学の f(f(x))とはどういう意...
-
f(x) g(x) とは?
-
差分表現とは何でしょうか? 問...
-
2つの2次方程式 y=f(x)とy=g(x)...
-
「 f(x)=|x| (-π≦x≦π) を周期的...
-
"交わる"と"接する"の定義
-
三次関数が三重解を持つ条件とは?
-
左上図、左下図、右上図、右下...
-
微小量とはいったいなんでしょ...
-
【数3 式と曲線】 F(x、y)=0と...
-
微分について
-
二次関数 必ず通る点について
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
数学 定積分の問題です。 関数f...
-
大学への数学(東京出版)に書...
-
eのx乗はeのx乗のまんまなのに...
-
yとf(x)の違いについて
-
数学Ⅱの問題です。 解説お願い...
-
マクローリン展開
-
フーリエ変換できない式ってど...
おすすめ情報