【先着1,000名様!】1,000円分をプレゼント!

コンデンサー負荷(capacitor load)とはどういうことでしょうか。また、コンデンサ負荷と静電容量とは同じことでしょうか?
もう1点質問なのですが、「コンデンサーに負荷をかける」ということと、「コンデンサーが電気を蓄えるということとは、同じことでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (6件)

コンデンサは電力を消費しませんから、おそらく電線路の力率改善のための 「進相コンデンサ」 のことでしょう。

 電動機などの 誘導負荷 (コイル構成) に対し 容量負荷(コンデンサ構成) と言ったものと思います。

電線路に誘導負荷が増えれば、それだけ 無効電力を含んだ 皮相電力が増加し、設備全体の容量を実際の使用電力よりも増やさなければなりません。(モーター類は概算力率60% ”0.6” 前後)
(皮相電力=無効電力+有効電力 、  有効電力=皮相電力 x 力率 )

単なる抵抗負荷の場合は 力率が100%のため、 上の括弧の中の電力は (皮相電力=有効電力 つまり、有効電力=皮相電力 x 力率 ← 1 ) となります。

>コンデンサ負荷と静電容量とは同じこと?
電線路の 誘導負荷に見合った(打ち消す方向) 容量負荷をつなぎますが、ご質問の意味あいから察すると、 「コンデンサ負荷として必要な静電容量とは」 と言う質問が正しいのでは と思います。

>「コンデンサーに負荷をかける」ということと、「コンデンサーが電気を蓄えるということとは、同じことでしょうか?
同じではないかもしれませんが、似たようなものと思います。
コイル系の負荷では電圧に対して電流が90度遅れますね。 進相コンデンサではその蓄電の性質を利用して電流遅れを相殺する用に使用します。 コンデンサの電流は 90度進む(定説) コイル系による電流遅れを経済的な理由から、全てカバーすることはできませんが、進相コンデンサによる力率改善の目安は 95%程度 0,95 のようです。

参考のURL:
http://electric-facilities.jp/denki8/conden.html
    • good
    • 1
この回答へのお礼

ご丁寧な回答ありがとうございました。

お礼日時:2014/09/28 16:05

質問の前提が記載されていないので適切な回答か自信がないのですが



>> コンデンサー負荷(capacitor load)とはどういうことでしょうか。

・回路の負荷としてコンデンサーがつながっていると言うことでしょう
 他には抵抗負荷、コイル負荷、モーター負荷などがある。
 交流回路の場合負荷の特性によって動作が変わる

>> また、コンデンサ負荷と静電容量とは同じことでしょうか?

・静電容量というよりインピーダンスです
 静電容量が大きいとインピーダンスが小さくなり負荷としては重くなります

>> もう1点質問なのですが、「コンデンサーに負荷をかける」ということと、「コンデンサーが電気を蓄えるということとは、同じことでしょうか?

・コンデンサーに負荷をかける」と言う意味が分かりません
 直訳するとコンデンサーに蓄えた電力を負荷に放出することでしょう
 コンデンサーを負荷とするであれば「コンデンサーが電気を蓄えるということでしょう
    • good
    • 1
この回答へのお礼

「コンデンサーに負荷をかける」とはいわないのですね。ご回答ありがとうございました。

お礼日時:2014/09/23 23:36

 そもそも、「負荷」とは電気信号や電源を供給する「相手先」ということです。

電気を供給する側から見ると、「電気を消費される」「与えた電気を食われる」ということで、モーターを回して重い物を持ち上げるというイメージで「負荷」と考えればよいのではないでしょうか。「ぐいぐいと電気を送りこむ」というイメージと、「電気を吸い取られる」というイメージの両面があると思います。

 この負荷が「capacitor load」とは、「キャパシター性の負荷=容量負荷」ということで、コンデンサーのように「直流の電気は通さないが、交流の電気は周波数が高いほど電気を食う」負荷だということです。

 「resistance load」(これはあまり使われないかも)は「抵抗性の負荷」で、周波数に関係なく、直流の電気も交流の電気も同じように食います。

 「inductance load」は「インダクタンス性の負荷=誘導負荷」ということで、コイルのように「直流の電気や周波数の低い交流の電気ほど食い、周波数が高い電気はあまり食わない」ということです。


 「コンデンサーに負荷をかける」とは、上に書いたように、「電気の供給先(負荷、この場合はコンデンサー)に電気を供給する」程度の意味でしょう。「ぐいぐいと電気を送りこむ」イメージの言い方ですね。現象としては「コンデンサーが電気を蓄えることかもしれませんが、周波数によって蓄え方・通過のさせ方が異なりますので、電気を供給する側から見てどのように電気を食われるか、ということが問題になります。

この回答への補足

let the capacitors load for several minutes というような使われ方がされており、このloadがどういう意味か悩んでいました(英語圏の人が書いた英語ではないので、正しい使い方かどうかわかりません)。ご回答ありがとうございました。

補足日時:2014/09/23 23:40
    • good
    • 0

負荷にコンデンサが有るからコンデンサ負荷


http://www.hitachi-ies.co.jp/products/hdn/mgsw/s …
http://www.fa.omron.co.jp/guide/faq/detail/faq02 …
http://www.murata.co.jp/products/emicon_fun/2012 …


直接、コンデンサを駆動するわけでは無いけれど
結果的にコンデンサの突入電流が問題になる↓
http://www.tdk.co.jp/techmag/power/200809/index2 …
    • good
    • 0
この回答へのお礼

ありがとうございます。参考にさせていただきます。

お礼日時:2014/09/23 23:34

コンデンサ負荷とは、


正確には容量性負荷(capacitive load)と言います。
例えば、CMOSマイコンの論理回路は全て容量性負荷を駆動しています。
静電容量は容量性負荷の大きさの単位を意味し、例えば0.5pFなどです。

>「コンデンサーに負荷をかける」ということと、…

少なくともエレクトトニクスの分野では使いません。
どんなケースで使うものですか?

この回答への補足

ご回答ありがとうございます。実は、これは英文のマニュアルです。(ただし、英語圏の人が書いた英語ではないので、正しい英語かどうかはわかりません。)
capacitor loading capacityがxxボルト以上でなくてはならない、とか、capacitors have to load up again after gearshifting.というような使い方がされています。この場合のload upがどういう意味かよくわからないのです。おそらく、電気を蓄えるという意味かと思うのですが。

補足日時:2014/09/23 23:31
    • good
    • 0

>コンデンサー負荷(capacitor load)とはどういうことでしょうか。


●回路にコンデンサを接続することです。

>また、コンデンサ負荷と静電容量とは同じことでしょうか?
●とらえ方によります。
静電容量とは電荷を蓄える能力ですから、必ずしもコンデンサ負荷を指すものとは言えないでしょう。

>「コンデンサーに負荷をかける」ということと、「コンデンサーが電気を蓄えるということとは、同じことでしょうか?
●コンデンサーに負荷をかけるという言い方はしません。
コンデンサーに電圧を印可するということは、電気を蓄えることにつながります。
    • good
    • 1
この回答へのお礼

明確なご回答ありがとうございます。大変参考になりました。

お礼日時:2014/09/23 23:33

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q力率の「進み」「遅れ」

業務で利用している電力設備に力率計なるものがあり
中央にcosφとあり針はLead(進み)の0.98を指し示していましたが
これがどのような意味合いなのかさっぱり分かりません。

いろいろ他の質問とかを見てみると「遅れ」は良くて「進み」は良くないとありました。
どの程度良くないのでしょうか?
ユーザー設備に支障が出る可能性もあるとありましたが、どの辺りの値からが危険値なのでしょうか?

Aベストアンサー

NO.3です。

 電源が自家発でないとすれば問題は負荷端の電圧上昇のみとなります。
 進み力率(容量性負荷)による負荷端の電圧上昇は、受電系統のインピーダンスや負荷率によって変わりますが、力率計が設置されている設備を基準として、そこから負荷までの配線インピーダンスを5%(リアクタンスのみ)負荷率を100%とした場合、負荷端の電圧は力率の変化によりおおむね次のようになります。

力率 おくれ
      0.8  97.1%
      0.8598.7%
      0.9  97.9%
      0.9598.6%
      1.0  100.1%

力率 すすみ
      0.98  101.1%
      0.95  101.7%
      0.9  102.3%
      0.85  102.7%
      0.8  103.1%
      0.7  103.6%

電圧上昇は負荷率が高いほど大きくなります。

Qカットオフ周波数とは何ですか?

ウィキペディアに以下のように書いてました。

遮断周波数(しゃだんしゅうはすう)またはカットオフ周波数(英: Cutoff frequency)とは、物理学や電気工学におけるシステム応答の限界であり、それを超えると入力されたエネルギーは減衰したり反射したりする。典型例として次のような定義がある。
電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
導波管で伝送可能な最低周波数(あるいは最大波長)。
遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。


ですがよくわかりません。
わかりやすく言うとどういったことなのですか?

Aベストアンサー

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です。



電子回路の遮断周波数の場合
-3dB はエネルギー量にして1/2である事を意味します。
つまり、-3dBなるカットオフ周波数とは

「エネルギーの半分以上が通過するといえる」

「エネルギーの半分以上が遮断されるといえる」
の境目です。

>カットオフ周波数は影響がないと考える周波数のことでよろしいでしょうか?
いいえ
例えば高い周波数を通すフィルタがあるとして、カットオフ周波数が1000Hzの場合
1010Hzだと51%通過
1000Hzだと50%通過
990Hzだと49%通過
というようなものをイメージすると解り易いかも。

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です...続きを読む

Qプルアップ抵抗値の決め方について

ほとんどこの分野に触れたことがないので大変初歩的な質問になると思います。

図1のような回路でプルアップ抵抗の値を決めたいと思っています。
B点での電圧を4.1Vとしたい場合について考えています。その場合、AB間での電圧降下は0.9Vとなります。

抵抗値×電流=0.9Vとなるようにプルアップ抵抗の値を決めるべきだと考えていますが、この抵抗に流れる電流が分からないため、決めるのは不可能ではないでしょうか?

抵抗値を決めてからやっと、V=IRより流れる電流が決まるため、それから再度流れる電流と抵抗を調節していって電圧降下が0.9Vとなるように設定するのでしょうか。どうぞご助力お願いします。



以下、理解の補足です。
・理解その1
ふつう、こういう場合は抵抗値を計算するためには、電圧降下と抵抗に流れる電流が決まっていることが前提だと考えていました。V=IRを計算するためには、この変数のうち2つを知っていなければならないからです。
また、例えば5V/2Aの電源を使った場合、マイコン周りは電源ラインからの分岐が多いため、この抵抗に2A全てが流るわけではないことも理解しています。

電源ラインからは「使う電流」だけ引っ張るイメージだと理解しているのですが、その「使う電流」が分からないため抵抗値を決定できません。(ポート入力電流の最大定格はありますが…)


・理解その2
理解その1で書いたように、抵抗値を計算するためには、電圧降下と抵抗に流れる電流が必要だと理解しています。図2を例に説明します。Rの値を決めたいとします。
CD間の電圧降下が5Vであることと、回路全体を流れる電流が2Aであることから、キルヒホッフの法則より簡単にRの値とそれぞれの抵抗に流れる電流が分かります。今回の例もこれと同じように考えられないのでしょうか。

ほとんどこの分野に触れたことがないので大変初歩的な質問になると思います。

図1のような回路でプルアップ抵抗の値を決めたいと思っています。
B点での電圧を4.1Vとしたい場合について考えています。その場合、AB間での電圧降下は0.9Vとなります。

抵抗値×電流=0.9Vとなるようにプルアップ抵抗の値を決めるべきだと考えていますが、この抵抗に流れる電流が分からないため、決めるのは不可能ではないでしょうか?

抵抗値を決めてからやっと、V=IRより流れる電流が決まるため、それから再度流れる電流と抵抗を調...続きを読む

Aベストアンサー

NO1です。

スイッチがONした時に抵抗に流れる電流というのは、最大入力電流や最大入力電圧
という仕様から読めば良いのでしょうか。
→おそらくマイコンの入力端子の電流はほとんど0なので気にしなくてよいと思われます。
入力電圧は5Vかけても問題ないかは確認必要です。

マイコンの入力電圧として0Vか5Vを入れたいのであれば、抵抗値は、NO3の方が
言われているとおり、ノイズに強くしたいかどうかで決めれば良いです。
あとは、スイッチがONした時の抵抗の許容電力を気にすれば良いです。
例えば、抵抗を10KΩとした場合、抵抗に流れる電流は5V/10kΩ=0.5mAで
抵抗で消費する電力は5V×0.5mA=0.0025Wです。
1/16Wの抵抗を使っても全く余裕があり問題ありません。
しかし、100Ωとかにしてしまうと、1/2Wなどもっと許容電力の大きい抵抗を
使用しなければいけません。
まあ大抵、NO3の方が書かれている範囲の中間の、10kΩ程度付けておけば
問題にはならないのでは?

Qブレーカーの定格遮断容量について

カテゴリが違っていたら、申し訳ありません。
ブレーカーの仕様に定格電流と定格遮断容量とありますが、違いや意味を教えてください。定格電流は、その電流値を超えた場合にトリップするものだとは認識しているのですが。遮断容量は大きいほうがいいのでしょうか?詳しい説明をお願いします。

Aベストアンサー

こんにちわ!
いつも質問ばかりしていては、皆さんに申し訳ないので、微力ながら知っている範囲でお答えします。
ご参考にして頂ければ幸いです。

定格電流は、その遮断器に連続的に電流が流れ続けた時の動作の限界値を表していると思います。
限界値である定格電流値になった場合の動作は、日本の規格(JISなど)では、不動作の状態を維持する最大値を表しています。
しかし、諸外国では、動作する値を表す場合も多いようです。(例えば、アメリカ製など)
具体的に言うと、日本製の225AF/225ATの遮断器に225Aの電流を流したとしても遮断器はOFF動作しません。
しかし、アメリカ製の250AF/225AT(フレームという概念についての説明は、割愛します)の遮断器に225Aの電流を流すと遮断器はOFF動作を起こします。
これは、規格の考え方の違いでどちらが正しいとかという問題ではありません。しかし、一つの電気設備で、複数の規格を採用しなければならない場合などは、保護協調上注意を要する点であります。
この定格電流値以下で遮断器を利用している限り、遮断器の開閉操作を行ったとしてもメーカーが保証する回数まで(一般に数千回~数十万回)は、操作が可能である値という意味もあります。

一方、遮断容量は、その遮断器が、流れている電流を遮断できる最大の容量を表していると思います。
一般的に電気的な容量とは、電圧×電流×時間で表されます。これは、エネルギーの容量を表し、遮断容量の場合も同じです。よって、容量であるにも関わらず電流値であると捉えらえることは間違いだと思います。
しかし、現実には、遮断容量が、電流値で表されていることが多いのも事実です。
その理由は、日本の(多分全世界でそうだと思いますが?)電源事情が、定電圧送電方式となっているからです。即ち、電圧の項は、定数として扱えるため、変数となる電流値で表せば事実上問題がないのと、実用上合理的となるからだと思います。
実際の遮断器に書かれている、遮断容量の記載を見ると判るのですが、使う電圧によって遮断できる電流値が変わります。これは、遮断容量が変わるのではなく、遮断容量は同じであるため、遮断できる電流値が変わることを意味しています。
同じ型の遮断器を異なる電圧で使用する場合など勘違いし易いので、注意が必要です。また、動作時間が変更できる機能がある場合も遮断できる電流値は変わってきますので注意のほど。
電流を遮断すると言うことは、アーク電流によるエネルギー放出(一般的に、熱、音、光の形で放出される)を、遮断器構部分で絶えうる必要があります。
定格以上の容量を遮断しようとすると熱により接点が溶着したり、溶断してしまうことがあるようです。

最後に、遮断容量の大きいものの方が良いのかどうかと言う点については、必要な遮断容量が確保されていらば、最小値でかまわないと思います。
皆さんもご指摘している通り、遮断容量が大きくなると、値段、寸法、納期(受注生産品になったり)が大きく(高く、長く)なります。
必要な容量とは、その回路に流れる最大の電流値(容量を電流値で表した場合)で決まります。一般的に、最大電流値となるのは、短絡時となります。
ただし、エネルギーの供給源は、電源だけとは、限りません。例えば、三相誘導電動機が接続されていると電動機の運動エネルギーがエネルギー供給源となり数サイクルの間電源となりますので注意が必要です。
さらに、定格電流を超える電流値を、遮断した場合は、メーカーの保証動作回数までの動作が保証されるわけではありません。
短絡電流の遮断については、動作特性をよく調べて使用してください。経済性を無視すれば、一度短絡電流を遮断した遮断器は、交換すべきだという人もいます。

以上、だらだらと述べましたが、少しでも参考になればと思います。

こんにちわ!
いつも質問ばかりしていては、皆さんに申し訳ないので、微力ながら知っている範囲でお答えします。
ご参考にして頂ければ幸いです。

定格電流は、その遮断器に連続的に電流が流れ続けた時の動作の限界値を表していると思います。
限界値である定格電流値になった場合の動作は、日本の規格(JISなど)では、不動作の状態を維持する最大値を表しています。
しかし、諸外国では、動作する値を表す場合も多いようです。(例えば、アメリカ製など)
具体的に言うと、日本製の225AF/225ATの遮断器に...続きを読む

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Qボルテージフォロワの役割がよく分かりません。

ボルテージフォロワは、電流が流れることで寄生抵抗によって電圧値が低下しないようにするために、回路の入力段及び出力段に入れるものであると思いますが、
これを入れるのと入れないのでは具体的にどのような違いが表れるのでしょうか?

オペアンプを使った回路では通常、電流は流れないはずですので、このようなものは必要ないように思うのですが、どのような場合に必要になるのでしょうか?

Aベストアンサー

#1のものです。

ちょっと説明がうまくなかったようです。
ボルテージフォロワを使用するのは、次の段の入力インピーダンスが小さく電流がある程度流れる場合に、信号を元の電圧をそのまま受け渡す際に使用します。
とくに信号源の出力インピーダンスが大きいときは信号源に流れる電流を減らすため、受ける側の入力インピーダンスを大きくする必要があります。
反転増幅回路を用いると、入力インピーダンスを大きくすることができません。(反転増幅回路の入力インピーダンスは信号源と反転入力端子の間の抵抗にほぼ等しい。この抵抗の大きさはさほど大きくできない。)
非反転増幅回路を用いると、入力インピーダンスを大きくすることができます(非反転増幅回路の入力インピーダンスは非反転入力と反転入力のピン間インピーダンスにほぼ等しく、かなり大きな値になる。)が、増幅率が1よりも大きくなってしまいます。
これを元の信号のレベルに下げるために抵抗で分圧してしまうと、分圧に使用した抵抗分出力インピーダンスが増えてしまいます。これでは何のためにオペアンプを入れて電流の影響を減らしたの意味がなくなってしまいます。
元の電圧のまま、次の段に受け渡すにはボルテージフォロワがよいということになります。


次に、#1の補足に対して。
>反転増幅回路と非反転増幅回路は単に反転するかしないかの違いだと思っていたのですが、
>それ以外に特性が異なるのですか?
これは、上でも述べていますが、反転増幅回路と非反転増幅回路は、増幅回路の入力インピーダンスが異なります。
信号源の出力インピーダンスが大きく、電流が流れると電圧が変化してしまような用途では入力インピーダンスを高くできる非反転増幅が有利です。

>・出力インピーダンスとは出力端子とグラウンド間のインピーダンスだと思っていたのですが、それでいくと分圧するということは
>出力インピーダンスを下げることになるのではないのでしょうか?
違います。出力インピーダンスとは信号を発生させている元と入力先との間のインピーダンスを意味します。
出力インピーダンスは信号源から流れる電流による電圧降下の大きさを決定付けます。
オペアンプを使った回路での出力インピーダンスは、理想的な状態ですはゼロになります。
分圧用の抵抗を入れてしまうと、分圧に使用した抵抗のうち信号源と入力先に入っている抵抗分が出力インピーダンスとして寄与していしまいます。

>・それと非反転増幅回路の出力を抵抗などで分圧することで増幅率を1以上にするデメリットを教えて下さい。
これは、何かの勘違いですね。
非反転増幅回路で増幅率を1よりも大きくしたいのなら分圧などする必要はありません。
非反転増幅で増幅率を1以下にしたい場合は、何らかの方法で信号を減衰させる必要があります。ここで分圧を使うのはあまり好ましいことではないということです。

#1のものです。

ちょっと説明がうまくなかったようです。
ボルテージフォロワを使用するのは、次の段の入力インピーダンスが小さく電流がある程度流れる場合に、信号を元の電圧をそのまま受け渡す際に使用します。
とくに信号源の出力インピーダンスが大きいときは信号源に流れる電流を減らすため、受ける側の入力インピーダンスを大きくする必要があります。
反転増幅回路を用いると、入力インピーダンスを大きくすることができません。(反転増幅回路の入力インピーダンスは信号源と反転入力端子の間の抵抗...続きを読む

Q三相電力のUVWとRSTの違いについて

三相電力にはU相V相W相がありますよね?これはR相S相T相とどこが
違うのですか?
また、各相は発電したときから決まっているのですか?
素人の考えですが相というのは単に波形の順番に過ぎないと思いますのでどのケーブルが何相であってもかまわないような気がするのですが。
どなたか教えてください。よろしくお願いします。

Aベストアンサー

もともとは、RST、UVWに意味は無かったはずです。

有効電力がPowerから、P となった後
単にアルファベット順から、Qが無効電力、 Rは抵抗なので飛ばして
Sが皮相電力を表すようになったと記憶してます。
・・・P、Q、(R)、S、T、U、V、W、X、Y、Z

相の呼称に関しても、アルファベットの終わりより3つ1組として
 XYZ、UVW、RST が利用されるようになったと記憶してます。
XYZは何かと登場するため、利用は避けられているようですが
既にご回答されているUVWやRSTに対する意味づけは、後付けルールみたいなものだと思います。
1次側は大文字、2次側は小文字と区別しているケースも見かけます。

Q3相電動機の消費電力の求め方

3相電動機の消費電力の求め方について質問です。

定格電圧 200V
定格電流  15A
出力   3.7KW

上記の電動機ですが実際の電流計指示値は10Aです。
この場合の消費電力の求め方は
√3*200*15=5.1KW
3.7/5.1*=0.72
√3*200*10*0.72=2.4KW
消費電力 2.4KW

このような計算で大丈夫でしょうか?
宜しくお願いします。

Aベストアンサー

出力は軸動力を表しているので、消費電力はそれを効率で割る必要があるかと思います。
概算で出してみると、定格での効率が85%程度と仮定すると、定格時の消費電力は3.7/0.85=4.4kW程度になります。
この時の一次皮相電力は、5.1kVAで、無効電力Qnは√(5.1^2-4.4^2)=2.6kVar程度になります。

この無効電力は励磁電流が支配的でしょうから、負荷によらず変わらないとすると、軽負荷時に線電流が10Aになったときの皮相電力は√3*200*10 で3.5kVAで、このときの有効電力は√(3.5^2-2.6^2)=2.3 kW という具合になりそうに思います。

Qいまいち、はっきりわからない位相について

インピーダンスに抵抗を加えると、電流が電圧よりも90度位相がずれるのはなぜなのでしょうか?

Aベストアンサー

電気回路には抵抗性負荷、誘導性負荷(コイル)、容量性負荷(コンデンサ)があ
ります。

この3要素に単独に正弦波電圧を印加した場合はコイルとコンデンサで電圧と
電流の位相差が生じます。

コイルにおいては、電流が変化したとき、その逆方向に電圧が生じコイルのエ
ネルギーが蓄積や放出されます。
具体的には、増やそうとすると逆らい(電流に逆らう電圧を生じてエネルギー蓄
積)、減らそうすると加勢(電流を後押しする電圧を生じてエネルギー放出)する
と言うぐあいです、電流変化がなければコイルへのエネルギーの蓄積や放出は終
わります。

これが電流波形のテッペンで電圧が0になる理由で、電流に対して電圧の位相が
90°進む理由です。

コイルのエネルギーは逆らっているかと思えば、応援もしてくれるので純粋な
誘導性の負荷には電力消費はありません。

コンデンサにおいては、電圧が変化したとき電流が流れます、電圧が上昇して
いるときなら充電電流、下降しているときなら放電電流。

電圧の変化が止まれば電流も止まり、電圧に応じた電苛がコンデンサに蓄積さ
れています。

これが電圧波形のテッペンで電流が0になる理由で、電流に対して電圧の位相が
90°遅れる理由です。

コンデンサの電流は電荷が出たり入ったりしているだけなので、純粋な容量性
の負荷には電力の消費はありません。

コイルとコンデンサは90°進んで、90°遅れているので両者は180°の位相で
あり完全に逆位相になっています、つまりコイルがエネルギーを減らしながら
流した電流はコンデンサに蓄えられます、次にコンデンサが電圧を下げながら
放電した電流はコイルにエネルギーとして蓄えられます、電力の損失はないの
で、外部からの電力の供給を閉ざしても、これが永久に繰り返されます、これ
を共振と呼んでいます。

抵抗は電圧と同位相の電流を流すので、誘導性負荷や容量性負荷に対して90°
の位相を持つことになります。
抵抗性負荷は電流を妨げる要素なので電力消費を伴います。

因みに共振回路に抵抗を入れると電力を消費するので、電力の供給を閉ざすと
共振現象はいつか終わります。

共振周波数は誘導性(インダクタンス)と容量性(リアクタンス)の値が一致して
、両性質を相殺してしまう周波数の事を言います。

抵抗性(レジスタンス)と誘導性(インダクタンス)と容量性(リアクタンス)などの
総じて電気的特性を決定する値をインピーダンスと呼びます。

抵抗性の負荷も含んで共振現象にある回路は、抵抗性負荷だけが存在するように
見えます。

ラジオなどの同調回路はこれを利用して、聞きたい周波数を共振周波数に選んで
抵抗に、聞きたい電波だけの波形を取り出しています。

私も位相には高校時代に苦しみました、数式は全く理解できない人間なので、イ
メージや具体例にラジオを上げて理解できないかと書いて見ました。

邪魔だったら済みません、お詫びします。

電気回路には抵抗性負荷、誘導性負荷(コイル)、容量性負荷(コンデンサ)があ
ります。

この3要素に単独に正弦波電圧を印加した場合はコイルとコンデンサで電圧と
電流の位相差が生じます。

コイルにおいては、電流が変化したとき、その逆方向に電圧が生じコイルのエ
ネルギーが蓄積や放出されます。
具体的には、増やそうとすると逆らい(電流に逆らう電圧を生じてエネルギー蓄
積)、減らそうすると加勢(電流を後押しする電圧を生じてエネルギー放出)する
と言うぐあいです、電流変化がなければ...続きを読む

Qオペアンプに使用するパスコンは何故0.1μFなのでしょう?

いろいろ本を見てもパスコンは0.1μFをつければいい。という内容が多く、
何故パスコンの容量が0.1μFがいいかというのがわかりません。
計算式とかがあるのでしょうか?

Aベストアンサー

下記の「図2コンデンサの特性:(b)」を見てください。
http://www.cqpub.co.jp/dwm/contents/0029/dwm002900590.pdf

0.1μFのセラコンは、ほぼ8MHzで共振しています。
つまり8MHzまではキャパシタとしての特性を示しており、これより高い周波数ではインダクタと
なってしまうことがわかります。

0.1μFは単純に計算すると8MHzで0.2Ωのインピーダンスを示し、これは実用上十分低い
インピーダンスと考えられます。
つまり、大ざっぱにいって、10MHzまでは0.1μFのセラコンに守備を任せることができるわけです。
(従って、当然のことですが、10MHz~1GHzを扱うデバイスでは0.1μFでは不十分で、0.01μF~10pFといったキャパシタを並列に入れる必要が出てきます)

では低域の問題はどうでしょうか?
0.1μFは1MHzで2Ω、100kHzでは20Ωとなり、そろそろお役御免です。
この辺りからは、電源側に入れた、より大容量のキャパシタが守備を受け持つことになります。
(この「連携を考えることが、パスコン設計の重要なポイント」です)

ここで考えなければならないのが、この大容量キャパシタと0.1μFセラコンとの距離です。
10MHzは波長30mです。
したがって、(これも大ざっぱな言い方ですが)この1/4λの1/10、すなわち75cmくらいまでは、回路インピーダンスを問題にしなくてよいと考えます。

「1/40」はひとつの目安で、人によって違うと思いますが、経験上、大体これくらいを見ておけば、あまり問題になることはありません。
厳密には、実際に回路を動作させ、て異常が出ればパスコン容量を変えてみる、といった
手法をとります。

上記URLは、横軸目盛りがはっきりしていないので、お詫びにいくつかのパスコンに関するURLを貼っておきます。
ご参考にしてください。
http://www.rohm.co.jp/en/capacitor/what7-j.html
http://www.cqpub.co.jp/toragi/TRBN/contents/2004/tr0409/0409swpw.pdf
http://www.murata.co.jp/articles/ta0463.html

参考URL:http://www.cqpub.co.jp/dwm/contents/0029/dwm002900590.pdf

下記の「図2コンデンサの特性:(b)」を見てください。
http://www.cqpub.co.jp/dwm/contents/0029/dwm002900590.pdf

0.1μFのセラコンは、ほぼ8MHzで共振しています。
つまり8MHzまではキャパシタとしての特性を示しており、これより高い周波数ではインダクタと
なってしまうことがわかります。

0.1μFは単純に計算すると8MHzで0.2Ωのインピーダンスを示し、これは実用上十分低い
インピーダンスと考えられます。
つまり、大ざっぱにいって、10MHzまでは0.1μFのセラコンに守備を任せることができるわけ...続きを読む


人気Q&Aランキング