No.4ベストアンサー
- 回答日時:
「圧力」は、「面に垂直な力」です。
「面」を考えずに「圧力」は存在しません。「風船」を考えれば、表面の全ての垂直方向に「圧力」が働いています。「圧力のつりあい」は、あくまで「その面」についてのつりあいであり、「その面に垂直なベクトル」と考えれば「ベクトル」です。
図でいえば、Sという平面は、水面に平行な面である必要はありません。船の底のように、垂直でも斜めでもかまいません。
その平面の深さ h の位置の圧力が
P=P0+ρ*h*g
ということです。考える「面」によって方向が変わります。
たとえば、水面に垂直な面を考えて、上端が深さ h1 、下端が深さ h2 、幅が W であれば、
上端の圧力 P1 = P0+ρ*h1*g
下端の圧力 P2 = P0+ρ*h2*g
平均の圧力 Pa = P0+ρ* [(h2 + h1)/2] *g
で、この面に働く力は、
F = W * (h2 - h1 ) * Pa
の「横向き」になります。(考えている「水面に垂直な面」の垂直な方向である、水平方向)
水没して、まだ中が空気である自動車で、ドアが水圧で開かずに脱出できない、というのは、こういうことです。
No.7
- 回答日時:
複数の力が合わさった合力がゼロになるのが、力の釣り合いですね。
力は原則としてベクトルとして扱いますから、合力もベクトルです。合力がゼロという状態も、ゼロベクトルなどと呼んで、大きさがゼロのベクトルとして扱います。大きさがゼロなので向きが定義できないんですけど、足し算・引き算では単位を合わせるように、ベクトルの足し算・引き算はベクトルだと考えます。しかし、力の方向が向きはともかく、一直線上にあるのなら、ベクトルではなくスカラーとして扱うことができます。お示しの問題では、面なのでちょっと直感的に分かりにくいかもしれませんが、矢印が用いてあり(方向があるのはベクトルであることを示している)、矢印を平行移動すればは一直線上に重ねることができます。あるいは、四角く囲われた部分(ρS)の重心に力を集中させて考えているとしてもいいです。
>P=Po+ρShg
四角く囲った部分が動き出さない、つまり加速度がゼロだとすると、全ての力を足すとゼロになるはずなので、こうなっています(もし加速度aを持つなら、-ρSaという項をさらに足す必要があるが、設問にはないので割愛)。ρは密度でしょうから、体積を求めるのに必要なhを補ってあります。
さて、この式を変形すると、
Po+ρSg-P=0 → Po+ρSg+(-P)=0
とできます。全ての力を足すとゼロになる、それが力の釣り合いです。
こうできるのは向きが一直線上に揃っているからで、向きによる影響は値の正負しかなく、ベクトルの大きさだけを考えることができます。ですので、上記の式はベクトルではない(スカラー)として計算してしまえます。ベクトルでなくなったわけではないのです。与えられた条件が都合よく、ベクトルの大きさだけで計算してよいようになっているだけなのです。
P.S.
もしこれが例えば、摩擦のある斜面上に置かれた物体であれば、簡単な足し算・引き算ではできません。物体が滑り落ちようとする向きは斜面に沿っていますし、働いている重力の力は斜面に対して平行ではなく、傾いています。これらは、一直線上にできません。
図示して力の向きを示すだけなら、そのままでよいです。しかし具体的に計算したいなら、斜面に平行な方向と、斜面に垂直な方向に分解して考えます。重力による力も、その二つの方向に分解します。すると、その二つの方向それぞれで働いている複数の力を一直線上で考えることができ足し算・引き算でよくなります。
斜面に平行と垂直という分け方が大事です。その二つは直交(互いに90度になっていること)ですので、二つに分けた双方が、互いに影響しません(さらに直角三角形も出るので、ピタゴラスの定理が使える点も便利)。斜めに分けてしまうとそうはいきません。直交するように分けるからこそ、一つ一つに集中して考えることができ、計算も簡単になるのです。
ありがとうございます。
>一直線上にあるのなら、ベクトルではなくスカラーとして扱うことができます。
なんとなくこの概念を覚えてしまおうと思います。
No.6
- 回答日時:
物理学ではこういう場合、力のつり合いとはあまり言わないと思いますが、それは置いといて。
この式はベクトル式ではありません。向きが反対である力の、大きさが等しいという式です。
ベクトルの場合、等しいベクトルは重なります。
ベクトルは向きを含んでいますので、和が0である場合打ち消し合います。
力は、一次元(一つの方向だけ)の場合は、ベクトルもへったくれもないのですが、二次元、三次元への発展を考えて、一次元からベクトルを導入しています。しかし初等物理学の本では、わざわざベクトルの説明の後にベクトルを使っていない例もよく見かけます。
ベクトルで考えても、大きさだけで考えてもいいのですが、どちらであるかを明確にしておかなければなりません。どちらにせよ図上で向きを判断する必要があります。
No.5
- 回答日時:
〉方向が逆なのに等式が成り立つのはおかしいと思います。
言っていることがよくわかりませんが
圧力というのは正のスカラー。
圧力とそれが加わる面の方向が決まって
始めてカ(ベクトル)がきまる。
それだけです。
ありがとうございます。
圧力はスカラーだったんですか。加わる面が決まって初めてベクトルになるという概念は重要そうですね。
物理はどんなベクトル方向同士でも等号が成り立つようですね。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 力学の運動方程式につきまして 4 2023/07/17 14:43
- 物理学 力学v=r×ωにつきまして 5 2022/08/02 14:22
- 数学 数学 平面ベクトルにおける「一次独立」の定義は 3つのベクトルの大きさが0でない。平行でない。 でし 3 2023/04/10 02:25
- 数学 フィッシャーの線形判別関数 2 2022/10/15 10:46
- 数学 フィッシャーの線形判別関数 1 2022/10/15 12:51
- 物理学 『F=ma』 3 2022/12/07 21:25
- 大学・短大 大学物理の問題の解く過程と答えを教えてください 2 2022/06/06 20:01
- 数学 数学ベクトル 添付の問題ですが、 図の他に、AB=4, ベクトルABとベクトルACの内積が6 である 1 2022/12/30 14:10
- 高校 円運動の質問 4 2022/05/02 04:53
- 物理学 なめらかな水平面の床の上に、質量 200 g の物体がある。床の面を xy 面とし、鉛直方向に z 1 2022/07/23 11:28
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「黒歴史」教えて下さい
- ・2024年においていきたいもの
- ・我が家のお雑煮スタイル、教えて下さい
- ・店員も客も斜め上を行くデパートの福袋
- ・食べられるかと思ったけど…ダメでした
- ・【大喜利】【投稿~12/28】こんなおせち料理は嫌だ
- ・前回の年越しの瞬間、何してた?
- ・【お題】マッチョ習字
- ・モテ期を経験した方いらっしゃいますか?
- ・一番最初にネットにつないだのはいつ?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
基本ベクトルと単位ベクトルの...
-
ベクトル解析?!の問題につい...
-
ベクトルの太文字書きについて...
-
物理数学 曲面の媒介変数表示 ...
-
ベクトルを2乗表記 (v↑)^2 につ...
-
ベクトル軌跡について
-
新物理入門の光学のところなん...
-
子供の物理の問題の続きです。
-
連続の式の極(円筒)座標変換(2...
-
仕事はなぜスカラー?
-
エクセルでベクトルの計算
-
ベクトルと座標系につきまして
-
電荷と電束、磁荷と磁束について
-
万有引力のベクトル表示
-
【量子力学】エルミート共役と...
-
Φ=BScosθ の理由
-
三相交流の仕組みが調べても理...
-
角運動量の方向って何ですか?
-
物理に出てくる図を描くソフト...
-
ボーア水素原子モデルの電子の...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
ベクトル関数の概略を図示せよ...
-
ミラー指数:面間隔dを求める式...
-
重心と質量中心の違いについて
-
基本ベクトルと単位ベクトルの...
-
波数の意味と波数ベクトル
-
三相交流の仕組みが調べても理...
-
ベクトルの太文字書きについて...
-
ブリュアンゾーンの物理的な意味
-
ラウエ条件とブラッグ条件
-
電荷と電束、磁荷と磁束について
-
RL,RC並列回路のベクトル軌跡
-
ベクトル解析?!の問題につい...
-
速度ベクトルの単位の書き方
-
なぜ、エネルギーはスカラーで...
-
角速度のベクトルの方向は何故...
-
連続の式の極(円筒)座標変換(2...
-
物理に出てくる図を描くソフト...
-
何でBは軸性ベクトルでEは極...
-
角度からベクトルって求めるこ...
-
角運動量の方向って何ですか?
おすすめ情報