
A 回答 (4件)
- 最新から表示
- 回答順に表示
No.4
- 回答日時:
ベクトルの和は平行四辺形の対角線になります。
そして、ベクトルの絶対値は長さのことを指します。
つまりこの問題の |↑p+↑a|=|↑p-↑a| とは、
平行四辺形の対角線の長さが同じになると言っているのです。
計算してみます。両辺を二乗して
左辺:(↑p+↑a)^2=|↑p|^2 +2・↑p・↑a +|↑a|^2
右辺:(↑p-↑a)^2=|↑p|^2 -2・↑p・↑a +|↑a|^2
これが |↑p+↑a|=|↑p-↑a| であるためには、
2・↑p・↑a =-2・↑p・↑a より、↑p・↑a =0 であればよい。
ここで ∠POA=θ とおくと
↑p・↑a =|↑p|・|↑a|・cosθ=0
|↑p|も|↑a|も0ではないことから、cosθ=0
つまり、θ=90°
このことから、↑pと↑aが垂直であることが条件となります。
ゆえに、↑p⊥↑a
No.3
- 回答日時:
原点から↑p進み、そこから更に↑a進んだ時と、
原点から↑p進み、そこから更に↑a戻った時の、
原点からの距離が等しい。ということですね。
原点=O
原点から↑p進んだ点=P
Pから↑a進んだ点=A1
Pから↑a戻った点=A2
として、
OPA1の三角形と
OPA2の三角形を考えた時、
|↑p+↑a|=|↑p+↑a|より
OA1=OA2…①
よって△OA1A2は二等辺三角形となるので、
∠OA1P=∠OA2P…②
|↑a|=|-↑a|なので
PA1=PA2…③
①②③より
2つの辺とその間の角が等しいので、
△OPA1≡△OPA2である。
よって∠OPA1=∠OPA2であり、
A1,P,A2は同一直線上にあるため、
∠OPA1=∠OPA2=90°
つまり↑p⊥↑aである。
No.2
- 回答日時:
両辺を二乗して、展開して整理すると、
内積=0
になるのかな。
だから、ベクトルaとpは直交する。
数学忘れたので自信はないです。他にいい答えが書き込まれたらそちらを参考にしてください。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 数学の問題で法線ベクトルについて 5 2022/11/13 12:45
- 数学 ベクトル方程式(ヘッセの標準形)についての質問 2 2022/04/23 18:00
- 数学 数学直線の方程式とベクトル方程式について 直線の方程式で 点(x1,y1)を通り、直線ax+by+c 1 2022/08/12 12:13
- 数学 平面ベクトル 1 2022/08/05 14:17
- 数学 この問題がわかりません。 B(2,1,-1)を通り、法線ベクトルn*=(3,-1,2)の平面αの平面 4 2022/05/09 16:47
- 数学 ベクトル方程式の問題についてです。 直線L(x,y)=(0, -3)+s(1, 4)について、点P( 2 2022/06/19 11:43
- 数学 数B 2直線のなす角 ベクトル(-1,√3)に垂直で、原点Oからの距離が4である直線の方程式を求めよ 2 2022/06/30 01:05
- 数学 x^2+y^2*+z^2=169の点(5,12,0)における接平面の方程式を求めよという問題です。自 1 2022/12/24 00:40
- 数学 曲線y= f(x)上の任意の点Pで引いた法線とx軸の交点をN、Pからx軸に下ろした垂線の足をHとする 3 2022/12/25 10:45
- 物理学 面積速度一定の法則を(1/2)r v sinθを使って証明する方法 2 2023/06/25 12:43
このQ&Aを見た人はこんなQ&Aも見ています
関連するカテゴリからQ&Aを探す
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
下の図のように、底面BCDE...
-
三角形ABCと点pが3AP→+2BP→+7CP...
-
二次関数y=x^2-mx-m+3のグラフ...
-
放物線C:y=x^2+px+qは、点(...
-
平行な直線と平面の距離がどこ...
-
数学 ベクトル 成分 縦書き 横...
-
y=√3分の1x+1とのなす角が4分の...
-
x軸の正の向きってどこのこと言...
-
y=2xに関して、直線3x+y=15...
-
直線と辺の違い
-
画像の問題文の解説に△BCEを底...
-
線を13等分する方法を教えてく...
-
二次関数でy=x^2+6x+5 のグラフ...
-
数A 図形 この正六角柱において...
-
角CAFの大きさを教えてください...
-
ラプラス変換とフーリエ変換の...
-
正四面体の内接球の接点は各面...
-
半径R,面密度σの1/4円板の重心...
-
楕円と原点を通る直線との接点 ...
-
なんでですかーー?
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
直線と辺の違い
-
△OABにおいて辺OAを2:3に内分す...
-
108の正の約数の個数とその総和
-
x軸の正の向きってどこのこと言...
-
角CAFの大きさを教えてください...
-
2点A(4.-2).B(-2.6)を通る直線...
-
二次関数y=x^2-mx-m+3のグラフ...
-
問題文「四面体OABCにおいて、△...
-
ペンと定規と方眼紙だけど正三...
-
数IIの三角関数の問題です。 直...
-
【問】複素数平面上の3点O(0)、...
-
ABベクトル=bベクトル-aベク...
-
中二の勉強です。 つぎのことが...
-
三角形OABにおいて考える。 辺O...
-
数学Ⅱの領域について x²+y²≦9...
-
数学の問題です 青チャートの問...
-
平面上の3点OABについて線分AB...
-
この図形が等脚台形になる理由...
-
2つのベクトルのなす角が0と18...
-
y=√3分の1x+1とのなす角が4分の...
おすすめ情報