A 回答 (5件)
- 最新から表示
- 回答順に表示
No.5
- 回答日時:
y=ax²+bx+c__①
を2次式の一般形といいます。
方程式ax²+bx+c=0__②
を解くには、最初の2項ax²+bxを、式③のように一つの二乗項にすると解けます。
ax²+bx=a(x+p)²+・・・__③
式③を展開すると④になる。
ax²+bx=ax²+2apx+ p²・・・__④
右辺第2項でp=b/2a__⑤
と決める。するとその項は左辺のbxと一致する。
式④のa(x+p)²= a(x+ b/2a)²を、改めて計算すると⑥になる。
a(x+p)²= a(x+ b/2a)²= ax²+bx +a(b/2a)²= ax²+bx +b²/4a__⑥
最右辺のax²+bxを求めると
ax²+bx= a(x+p)²-b²/4a__⑦
これを②に入れると
ax²+bx+c = a(x+ p)²-b²/4a +c__⑧
ここで⑧式を⑨のように書くとqは⑩式となる。式②を⑨のように変形する計算を
平方完成という。
ax²+bx+c =a(x+ p)²+q=0__⑨
q=-b²/4a +c=-(b²-4ac)/4a__⑩
右辺の括弧内を判別式という。
D=b²-4ac__⑪
方程式⑨を解くと
a(x+ p)²+q=0、a(x+ p)²=-q=(b²-4ac)/4a=D/4a
(x+ p)²=D/4a²
x+ p=±√D/2a
x =-p±√D/2a=-b/2a±√D/2a=(-b±√D)/2a__⑫
これが二次方程式の解の公式です。
放物線の基本の式は⑬式です。
y= ax²__⑬
このグラフはa>0のとき下に凸の放物線になる、a<0のとき上に凸の放物線になります、
左右対称で、対称軸はx=0にあり、放物線の頂点は原点にあります。
次に式を
y= a(x+p)²__⑭
とすると、x=-pとすると、⑭式でx+p=0となり、それは式⑬でx=0としたのと同じ計算をすることになるので、⑭のグラフは⑬のグラフの原点x=0をx=-pに移動したものになります。つまり、⑬のグラフをpだけ左にずらせばよい。
次に⑭にqをたして⑮とすると
y= a(x+p)²+q__⑮
⑭のグラフは⑬のグラフをy方向に、つまり、上にqだけずらせばよい。
軸の位置はx=-p=-b/2a。頂点は(-p,q)= (-b/2a,D/4a)__⑯
No.3
- 回答日時:
2行目の式は y=a(x-p)²+q ですね。
此の式は、「平方完成」した式と云います。
y=ax² のグラフを x 軸に沿って p 、y 軸に沿って q 平行移動させると、
y=a(x-p)²+q と云う形になります。
2次関数の一般的な形 ax²+bx+c を平方完成するには、
下記のサイトが解り易いと思います。参考にしてみて下さい。
https://kou.benesse.co.jp/nigate/math/a13m0204.h …
https://atarimae.biz/archives/20271
https://www.studyplus.jp/460
あなたの波長と合ったもので、理解を深めて下さい。
No.2
- 回答日時:
a とか p とか q とか抽象的な書き方ではグラフは書けません。
a=1 とか p=2 とか q=3 にして、
y = x - 3
y = (x - 2)²
などの具体的な式にして、
x = -2, -1, 0, 1, 2, 3, 4, 5, ・・・
と数値を入れて y の値を求め、グラフ用紙に (x, y) の組ごとにプロットして、それを線でつないでみてください。
グラフを書くとは、そういうことです。
その基本をおろそかにして、「グラフの一般形」などを覚えようとしても無駄です。
No.1
- 回答日時:
中学校では、
「yはxの二乗に比例し〜」
と言われたら、
y=ax² ー①
↑必ず原点を通る
が思い浮かんだと思います。
ですが、高校では
与えられた2次方程式
y=ax²+bx+c ー②
を、
y=a(x-p)²+q ー③
↑原点を通るとは限らない
に変形する「平方完成する」
(②式から③に変形することを指す)
というものをやらなくてはいけません。
③式 y=a(x-p)²+qのグラフは、
①式 y=ax²のグラフをx軸方向にp、y軸方向にqだけ平行移動した放物線のことです。
以下の公式を覚えましょう。
__________________________________
〜公式〜
y=ax²+bx+c のグラフを書くには、
y=a(x-p)²+q と平方完成する。
ただし、
p=-b/2a q=-(b²-4ac)/4a
__________________________________
平方完成するのは(数学が苦手な人は)出来るだけ多くの問題に触れて慣れることです。
〜平方完成のこつ〜
1.与えられた2次方程式のx²の係数aをまず外に出します。
2.xの係数bをaで割ります。
3.(b/a)²して1/2倍したものが、-pの値になります。
4.p²にaをかけた値ap²とcとの差を計算して、qの値で引いたり足したりします。
よかったら平方完成してみてください。
y=2x²-12x+15
では、頑張ってください。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
10代と話して驚いたこと
先日10代の知り合いと話した際、フロッピーディスクの実物を見たことがない、と言われて驚きました。今後もこういうことが増えてくるのかと思うと不思議な気持ちです。
-
人生最悪の忘れ物
今までの人生での「最悪の忘れ物」を教えてください。 私の「最悪の忘れ物」は「財布」です。
-
メモのコツを教えてください!
メモを取るのが苦手です。 急いでメモすると内容がごちゃごちゃになってしまったり、ひどいときには全く読めない時もあります。
-
許せない心理テスト
私は「あなたの目の前にケーキがあります。ろうそくは何本刺さっていますか」と言われ「12本」と答えたら「ろうそくの数はあなたが好きな人の数です」と言われ浮気者扱いされたことをいまだに根に持っています。
-
あなたの習慣について教えてください!!
あなたが習慣だと思って実践しているものを共有してくださいませんか? 筋肉トレーニングでも朝シャワーでも、あなたが習慣だなと思えば何でも構いません
-
現在中3です。y=a(x-p)+q の式について教えて欲しいです。 この式は何を求めることができます
高校受験
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
タンジェントとアークタンジェ...
-
積分の面積を求める問題で 上−...
-
ゴンペルツ曲線の式
-
関数のグラフでy'''はなにを意...
-
4乗のグラフ
-
関数、y=0 などのグラフの...
-
数3 関数の極限 どういう問題の...
-
三次関数のグラフ 微分した二次...
-
三角関数 y=cos3θのグラフの書...
-
数学の質問です。分数関数の分...
-
「2次不等式2x²+3x+m+1<0を満た...
-
「グラフの概形を描け」と「グ...
-
x^2-4x+4>0の解
-
10の1.2乗が、なぜ16になるのか...
-
高校二年生になったばかりの者...
-
y=a(x-p)2乗 y=a(x-p)+q の...
-
成長曲線として使われるロジス...
-
右の図はy=4分の5xと、x>0...
-
分数の計算やルート、グラフを...
-
グラフの類似度について
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
三角関数 y=cos3θのグラフの書...
-
積分の面積を求める問題で 上−...
-
4乗のグラフ
-
関数のグラフでy'''はなにを意...
-
【 数Ⅰ 2次関数 】 問題 関数y=...
-
数3 関数の極限 どういう問題の...
-
数学の質問です。分数関数の分...
-
タンジェントとアークタンジェ...
-
「グラフの概形を描け」と「グ...
-
10の1.2乗が、なぜ16になるのか...
-
関数、y=0 などのグラフの...
-
高校二年生になったばかりの者...
-
x^2-4x+4>0の解
-
ゴンペルツ曲線の式
-
(高校数学) 放物線y=(x-2)^2とx...
-
増減表について
-
「2次不等式2x²+3x+m+1<0を満た...
-
2点集中荷重片持ち梁について
-
Xについての方程式|x²-1|+x=Kが...
-
極値と変曲点を同時に持つ点あ...
おすすめ情報