
No.2ベストアンサー
- 回答日時:
0 ≦ x < ∞ の範囲で |f(x)| ≦ 2 だというだけでは、
∫[0,∞] f(x) dx は収束する例もしない例もあります。
例えば、
f(x) = 2(定数関数) は ∫[0,∞] f(x) dx = +∞ と発散するし、
f(x) = sin x は |f(x)| ≦ 2 を満たすが ∫[0,∞] f(x) dx は収束しません。
一方、
f(x) = 2/(x+1)^2 ならば |f(x)| ≦ 2 を満たしており、∫[0,∞] f(x) dx = 2 は収束します。
|f(x)| ≦ 2 だけでは収束発散は判定できない、つまり
その評価は甘いということです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 大学物理 3 2023/07/27 17:48
- 数学 大学数学 解析学 区間[a,b]で有界な関数f(x)が[a,b)で連続であるとき、f(x)は[a,b 2 2022/12/23 04:04
- 数学 「f(z)=1/(z^2-1)に関して ローラン展開を使う場合、マクローリン展開を使う場合、テイラー 3 2022/08/27 19:56
- 数学 解析学の問題がわかりません 1 2023/01/12 22:59
- 数学 (1+x^2)y'=1 の微分で教えて下さい 2 2022/08/30 10:23
- 数学 バーゼル問題について 1 2022/11/16 18:57
- 数学 写真について質問なのですが、 ①の図の面積Sを求めるとき、②と③の図の面積、つまりS=S2+S3で求 4 2023/04/27 17:20
- 数学 乗法公式の問題についてです。 (x-y)(2x+y)??? 2 2022/10/18 19:50
- 統計学 連続型の確率変数について 6 2023/08/25 08:44
- 物理学 質量Mの気球が、密度ρの空気中にある 気球が一定の速さv0で下降していて、気球には抵抗係数γの空気抵 4 2023/07/04 04:08
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
統計学
-
数学の f(f(x))とはどういう意...
-
関数 f(x) = e^(2x) につい...
-
f(x) g(x) とは?
-
ボレル可測集合、外測度の範囲 ...
-
eのx乗はeのx乗のまんまなのに...
-
αを代数的数とし、f(x)⊂Z[x]を...
-
楕円積分
-
漸近線の求め方
-
微小量とはいったいなんでしょ...
-
数学についてです。 任意の3次...
-
差分表現とは何でしょうか? 問...
-
n次多項式f(x) f(x^3)の最高次...
-
関数方程式 未知関数
-
左上図、左下図、右上図、右下...
-
lim[x→0] x/(e^x-1) を計算する...
-
問431,不等式x⁴-4x³+28>0を証...
-
Henselの補題の証明で質問です。
-
"交わる"と"接する"の定義
-
f(x)=x^3はx=0で連続か不連続か
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
左上図、左下図、右上図、右下...
-
数学の f(f(x))とはどういう意...
-
微小量とはいったいなんでしょ...
-
"交わる"と"接する"の定義
-
差分表現とは何でしょうか? 問...
-
微分について
-
【数3 式と曲線】 F(x、y)=0と...
-
数学の記法について。 Wikipedi...
-
ニュートン法について 初期値
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
三次関数が三重解を持つ条件とは?
-
次の等式を満たす関数f(x)を求...
-
次の関数の増減を調べよ。 f(x)...
-
問431,不等式x⁴-4x³+28>0を証...
-
関数が単調増加かどうか調べる...
-
なんで(4)なんですけど 積分定...
-
関数方程式f(x)=f(2x)の解き方...
-
積分する前のインテグラルの中...
-
どんな式でも偶関数か奇関数の...
おすすめ情報