
A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
「f(x)=g(x) a.e. x∈X」ってのは、∫_{x∈X | f(x)≠g(x)} dm(x) = 0 ってことだよね?
f(x)=g(x) かつ g(x)=h(x) ならば f(x)=h(x) が成り立つから、対偶をとって
{x∈X | f(x)≠h(x)} ⊂ {x∈X | f(x)≠g(x)} ∪ {x∈X | g(x)≠h(x)} です。
よって、
0 ≦ ∫_{x∈X | f(x)≠h(x)} dm(x) ≦ ∫_ {x∈X | f(x)≠g(x)}∪{x∈X | g(x)≠h(x)} dm(x)
≦ ∫_ {x∈X | f(x)≠g(x)} dm(x) + ∫_{x∈X | g(x)≠h(x)} dm(x)
= 0 + 0.
すなわち、「f(x)=h(x) a.e. x∈X」。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- その他(自然科学) 風車音の測定 3 2023/04/28 07:12
- 物理学 共振周波数と尖鋭度の測定値と理論値の誤差について RLC直列共振回路の実験で共振周波数fと尖鋭度Qの 2 2022/05/22 23:45
- 数学 確率について ①Xが実数値をとる確率変数で、f(x)=0(x<=-1),1/4x+1/4 (-1<= 2 2022/06/20 18:44
- 物理学 アインシュタインの相対論は、3者間でどういう誤魔化しも効かなくなりますか? 2 2022/05/06 21:23
- 統計学 統計検定3級の内容です 6 2022/05/15 09:16
- 数学 大学数学 解析学 区間[a,b]で有界な関数f(x)が[a,b)で連続であるとき、f(x)は[a,b 2 2022/12/23 04:04
- 数学 次の解析学の問題がわからないので教えて頂きたいです。 k>0 関数f(x)が区間[0,∞)で連続であ 3 2022/11/17 20:52
- 数学 関数f(x)が閉区間[a、b]で連続で開区間(a、b)で微分可能なら f(b)-f(a)/b-a = 1 2023/07/19 17:26
- 数学 信号の類似度を測定に関する質問です。 3 2022/12/01 15:24
- 数学 次の解析学の問題が解けないので教えていただきたいです。 関数f(x),g(x)がそれぞれ区間I,Jで 2 2022/11/17 20:50
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
微分について
-
一般的にこれは成り立つのでし...
-
数学の f(f(x))とはどういう意...
-
関数方程式 未知関数
-
数学にでてくるf(x)とかいうの...
-
大学への数学(東京出版)に書...
-
定積分と図形の面積
-
a^8+a^6+5a^4+4a^2+4の因数分解
-
積分する前のインテグラルの中...
-
導関数と微文法
-
微分の公式の導き方
-
微分
-
「次の関数が全ての点で微分可...
-
極限操作は不等号関係を保存し...
-
f(x)=xe^-2xの極大値
-
関数の極限
-
左上図、左下図、右上図、右下...
-
【数3 式と曲線】 F(x、y)=0と...
-
線形2階微分方程式と非線形2...
-
差分表現とは何でしょうか? 問...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
左上図、左下図、右上図、右下...
-
数学の f(f(x))とはどういう意...
-
微小量とはいったいなんでしょ...
-
"交わる"と"接する"の定義
-
差分表現とは何でしょうか? 問...
-
微分について
-
【数3 式と曲線】 F(x、y)=0と...
-
数学の記法について。 Wikipedi...
-
ニュートン法について 初期値
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
三次関数が三重解を持つ条件とは?
-
次の等式を満たす関数f(x)を求...
-
次の関数の増減を調べよ。 f(x)...
-
問431,不等式x⁴-4x³+28>0を証...
-
関数が単調増加かどうか調べる...
-
なんで(4)なんですけど 積分定...
-
関数方程式f(x)=f(2x)の解き方...
-
積分する前のインテグラルの中...
-
どんな式でも偶関数か奇関数の...
おすすめ情報