
https://detail.chiebukuro.yahoo.co.jp/qa/questio …
の回答にある、以下の式変形についての質問です。
> z-pi/2=u とおくと、
> tan(z)=-cos(u)/sin(u)
> =(-1/u)*{1-u^2/2!+...}/{1-u^2/3!+...} ……(A)
> =(-1/u)*{1+3u^2+...}. ……(B)
(A)から(B)の変形がよくわかりません。
u = z - π/2
tan(z) = sin(z)/cos(z)
= sin(u+π/2)/cos(u+π/2)
= cos(u)/-sin(u)
= -cos(u)/sin(u)
-cos(u)/sin(u)
= -(1 - u^2/2! + u^4/4! + …)/(u - u^3/3! + u^5/5! - …)
= -(1 - u^2/2! + u^4/4! + …)/u(1 - u^2/3! + u^4/5! - …)
= (-1/u)(a[0] + a[1]u^1 + a[2]^2 + …)
とおくと
(1 - u^2/2! + u^4/4! + …)
= (1 - u^2/3! + u^4/5! - …)*(a[0] + a[1]u^1 + a[2]u^2 + …)
ここで2行目(右辺)を展開して、左辺と比較することで a[0]、a[1]、a[2] … を確定したいのですが、その方法がよくわかりません。たとえば a[2] を求めるのに
a[2]u^2(1 - u^2/3! + u^4/5! - …) = -u^2/2!
a[2](1 - u^2/3! + u^4/5! - …) = -1/2!
a[2] = -1/2!(1 - u^2/3! + u^4/5! - …)
となってしまいます。どうしたらいいのでしょうか?
No.3
- 回答日時:
質問の答案は、
a[2] = (-1/2!)(1 - u^2/3! + u^4/5! - …)
の右辺に u が登場する時点で
冪級数の係数比較が正しく行われてないことが判る。
そもそも、
a[2]u^2(1 - u^2/3! + u^4/5! - …) = -u^2/2!
が成立しない。(成立する根拠が何かある?)
正しい係数比較は、
(1 - u^2/2! + u^4/4! + …)
= (1 - u^2/3! + u^4/5! - …)*(a[0] + a[1]u^1 + a[2]u^2 + …)
の右辺を展開して
(1 - u^2/2! + u^4/4! + …)
= a[0] + a[1]u^1 + { (-1/3!)a[0] + 0a[2] + 1a[2] }u^2 + …
これの両辺の係数を比較して
1 = a[0],
0 = a[1],
-1/2! = (-1/3!)a[0] + 0a[2] + 1a[2],
…
これらを順に解いて、
a[0] = 1,
a[1] = 0,
a[2] = -1/3,
a[3] = …
となる。
No.2
- 回答日時:
掛け算したい二つの級数は両方とも偶数べきの項しか持たないから
たとえばw=u^2とおいてwのべき級数の掛け算として展開して
再びw=u^2とおいたほうが見やすくないですか?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開に関して 以外の「」の解答を頂き 13 2022/11/11 09:45
- 数学 tan(z)=h(z)/(z-π/2)から h(z)=-(z-π/2)cos(z-π/2)/sin( 2 2022/08/01 23:44
- 数学 回答者どもがなかなか答えられないようなので、考えてみました。 ∫[0,π/2]log(sinx)/( 4 2022/08/31 16:30
- 数学 「n≦-2の時 z≠π/2の時 g(z)=tan(z)(z-π/2)^(-n-1) z=π/2の時 22 2022/07/04 22:24
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開は f(θ) =sin(θ)/c 5 2022/10/29 21:02
- 数学 ∮{cos(x/2)+sin(x/2)}dx =2sin(x/2)-2cos(x/2)+C =2√2 3 2023/10/05 01:49
- 数学 1/sin^2xと1/tan^2xの微分の答えが同じになってしまう件について 2 2023/12/09 17:42
- 数学 高校生です。 この問題が解説がないため合ってるか分かりません。 この回答であってますか? 回答 g( 3 2023/01/24 14:05
- 数学 高校生です。 この問題の解説がなくてこの解き方で合っているでしょうか? g(x,y)=0のとき x^ 2 2023/01/25 17:28
- その他(教育・科学・学問) sin、cos、tanについて。 物理で、角度を求めろという問題なのですが、cosとsinは分かって 3 2024/02/24 12:35
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
急いでます! θが鈍角で、sinθ...
-
sinθ +cosθ =1/3 (0°≦θ≦ 180°)...
-
【数学】cosθのcosのコサインっ...
-
数学の問題を教えてください
-
数ⅠA、三角比です。 画像の( 2 ...
-
sinθ+cosθ=1/3のとき、次の式の...
-
三角関数の合成
-
加法定理の証明
-
0<=θ<2πのとき、この式を解いて...
-
楕円の円周上座標値を知りたいです
-
πを含んだ解は不正解ですか?
-
3辺の比率が3:4:5である直...
-
三角関数
-
θが鈍角のとき、sinθ=4分の3の...
-
0°≦θ≦180°のとき、次の方程式、...
-
偶信号・奇信号
-
「1対2対√3」と「サイン,コ...
-
原点中心に図形を回転させる。(...
-
sin75°×sin15°の値を求めなさい...
-
∫sin^2x/cos^3xdxの解き方が...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
sin2xの微分について
-
tanθ=2分の1のときの sinθとcos...
-
高1 数学 sin cos tan の場所っ...
-
θが鈍角のとき、sinθ=4分の3の...
-
次の三角比を45°以下の角の三角...
-
e^iθの大きさ
-
教えてください!!
-
3辺の比率が3:4:5である直...
-
二つの円の重なっている部分の面積
-
画像のように、マイナスをsinの...
-
急いでます! θが鈍角で、sinθ...
-
sinθ+cosθ=1/3のとき、次の式の...
-
力学・くさび
-
sinφ(ファイ)の求め方を教えて...
-
楕円の単位法線ベクトルがわか...
-
三角形の二辺と面積から、残り...
-
sinθ-√3cosθをrsin(θ+α)の形...
-
式の導出過程を
-
数学 2次曲線(楕円)の傾きの計...
-
三角関数 sin cos tanの表につ...
おすすめ情報