No.8ベストアンサー
- 回答日時:
> わたしのにほんごがおかしいってことですか??????????
いいや、
https://yomoriki.com/physical-mathematics/47110/
のにほんごがおかしい。
あの文章では、
∫[-∞,∞]f(x)dx = 2∫[0,∞]f(x)dx が成り立つ理由が
積分が広義積分だからだと言ってるように見える。
そうではない!という話は、No.1 に書いた。
No.5
- 回答日時:
f(x)=e^(-ax^2)
が
偶関数だから
∫[-∞,∞]f(x)dx = 2∫[0,∞]f(x)dx
といえる
No.2
- 回答日時:
結論だけ言えば、
> 広義積分には、∫[-∞,∞]f(x)dx = 2∫[0,∞]f(x)dx という性質があります。
は間違い。
例えば、x ≧ 0 のとき f(x) = e^(-x), x < 0 のとき f(x) なる f(x) に対して、
∫[-∞,∞]f(x)dx = 2∫[0,∞]f(x)dx の両辺は広義積分として収束するが
この式のイコールは成り立たない。
ただね...
その引用元の著者が間違えてそんな嘘を書いたのか、
著者は別のことを書いたのだが「ゆゆにゃ」が誤読して
そのように受け取ったのかは、かなり微妙なセンだと思うよ。
過去の質問の内容からしてね。
もうちょっとキリトリを大きくして、前後の文脈を添えて引用すれば、
どちらの人が間違えたのかが判るかもしれない。
このページの一番下にあります
https://yomoriki.com/physical-mathematics/47110/
私の読解力がへんなだけですか????
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 数学の主表象とはなんですか?Wikipediaの説明にも置換積分法 ∫f(x)dx=∫f(x)dx/ 2 2024/02/29 12:11
- 数学 積分について ∫f(x)dxの外側に変数xが含まれた式が積の形で付いていた場合、それも積分の対象にな 3 2024/01/19 19:12
- 数学 積分と不等式 2 2023/01/26 21:52
- 数学 全微分について質問です。 z=f(x,y)のとき df=(∂f/∂x)dx+(∂f/∂y)dy ∂f 5 2023/02/24 05:46
- 数学 解析学の問題がわかりません 1 2023/01/12 22:59
- 数学 【全微分について】 z=f(x,y) の全微分は df=(∂f/∂x)dx+(∂f/∂y)dy と表 1 2023/02/25 05:49
- 数学 f(x,y)=-2y/(x^2+y^2) という関数を不定積分すると、 ∫ -(2y)/(x^2 + 2 2023/06/12 20:25
- 数学 解析学の問題がわからず困っています。 2 2023/01/12 23:07
- 数学 これはわかる 6 2024/05/16 15:53
- 物理学 内積 3 2022/12/04 18:41
このQ&Aを見た人はこんなQ&Aも見ています
-
【お題】NEW演歌
【大喜利】 若い人に向けたことは分かるけど、それはちょっと寄せ過ぎて変になってないか?と思った演歌の歌詞
-
これ何て呼びますか
あなたのお住いの地域で、これ、何て呼びますか?
-
土曜の昼、学校帰りの昼メシの思い出
週休2日が当たり前の今では懐かしい思い出ですが、昔は土曜日も午前中まで学校や会社がある「半ドン」で、いつもよりちょっと早く家に帰って食べる昼ご飯が、なんだかちょっと特別に感じたものです。
-
プリン+醤油=ウニみたいな組み合わせメニューを教えて!
プリンと醤油を一緒に食べると「ウニ」の味がする! というような意外な組み合わせから、新しい味になる食べ物って色々ありますよね。 あなたがこれまでに試した「組み合わせメニュー」を教えてください。
-
うちのカレーにはこれが入ってる!って食材ありますか?
カレーって同じルーから作っても、家庭によって入っているものや味が微妙に違っていて面白いですよね! 「我が家のカレーにはこれが入ってるよ!」 という食材や調味料はありますか?
-
こういう積分って
数学
-
1+2+3+…=?
数学
-
対数
数学
-
-
4
これは証明になってる
数学
-
5
n 個のサイコロを同時に振る。 ただし、nは正の整数とする。 出た目の数の積が6の倍数となる確率を求
数学
-
6
ラプラシアンを表すデルタと微小変位を表すデルタが同じなのは理由がありますか?
数学
-
7
中二数学について質問です。 整数の性質のところで、nを整数とすると2の倍数は2n、3の倍数は3nなど
数学
-
8
数学 なぜn²が4の倍数だとわかるのか
数学
-
9
これなぜ最後の不定形が0に収束するとわかるのでしょうか。a,b分かってそれを代入しても不定形になるだ
数学
-
10
cosθ-cosαが正であることを示し方がわかりません。 ただし、-π/2<θ<π/2 0<α<π/
数学
-
11
数学の問題が解けません
数学
-
12
こちらの2024/08/20 18:17にされた質問と解答を基に質問があります。 https://o
数学
-
13
なぜ?counterintuitive
数学
-
14
何をもってしていってますか? こうが収束するのと級数が収束するのは違いますが
数学
-
15
難しいのでゆっくりよんでください。
数学
-
16
仕事をクビになり会社の門で憔悴していたらババアがいきなり話しかけてきました。 「この大きい袋に7で割
数学
-
17
a^3+b^3=(a+b)(a^2-ab+b^2)となると思いますが何故こうなるのですか? 理解力低
数学
-
18
数学の問題で 因数分解の問題で、なぜ(x+1)^2が次の{}の中に入った瞬間に2乗ではなくなるのです
数学
-
19
こうなる理由が分かりません
数学
-
20
数学 算数の通分について 分数を約分するときって 例えば分母が 8と6だったら8×6をして48 だか
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
差分表現とは何でしょうか? 問...
-
f(x) g(x) とは?
-
マクローリン展開
-
"交わる"と"接する"の定義
-
次の等式を満たす関数f(x)を求...
-
ニュートン法について 初期値
-
微分について
-
不足和の求め方について
-
f(0)とf(0+)の違い。(+は上付き...
-
f(x)=x√(2x-x^2)が与えられて...
-
【大至急!!!】数学的帰納法...
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
関数 f(x) = e^(2x) につい...
-
数学の f(f(x))とはどういう意...
-
次の関数の増減を調べよ。 f(x)...
-
数学 定積分の問題です。 関数f...
-
ランダウの記号のスモール・オ...
-
二次関数 必ず通る点について
-
極限、不連続
-
掛け算も足し算も同じ値
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
数学の f(f(x))とはどういう意...
-
差分表現とは何でしょうか? 問...
-
"交わる"と"接する"の定義
-
次の関数の増減を調べよ。 f(x)...
-
三次関数が三重解を持つ条件とは?
-
ニュートン法について 初期値
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
次の等式を満たす関数f(x)を求...
-
微小量とはいったいなんでしょ...
-
二次関数 必ず通る点について
-
微分について
-
左上図、左下図、右上図、右下...
-
数学II 積分
-
どんな式でも偶関数か奇関数の...
-
数学 定積分の問題です。 関数f...
-
フーリエ変換できない式ってど...
-
数学についてです。 任意の3次...
-
大学の問題です。
-
Gnuplotについて エラーメッセ...
おすすめ情報
このひとたぶんe^-ax^2
がおもいえかべてるのが
減少関数のきがします。(y軸対称なのに。)