a(n) = 1/(n+1)! lim[z->π/2] (d/dz)^(n+1) [(z-π/2)tan(z)] に含まれるg(z)=(z-π/2)tan(z)の留数(residue)を求めるために、
g(z)をテイラー展開します。
展開した式から(z-π/2)の係数を取り出します。
取り出した係数を(n-1)!で割ります。
この方法によって、留数を求めることができます。
と言われたのですが、どうか指示に従いg(z)=(z-π/2)tan(z)の留数を求めるまでを教えて頂けないでしょうか?
- 画像を添付する (ファイルサイズ:10MB以内、ファイル形式:JPG/GIF/PNG)
- 今の自分の気分スタンプを選ぼう!
A 回答 (22件中21~22件)
- 最新から表示
- 回答順に表示
No.4
- 回答日時:
g(z)に対し
z=aが孤立特異点であるとき
g(z)の
z=aにおける
留数Res(g,a)が
Res(g,a)={1/(2πi)}∫[|z-a|=r]g(z)dz
と定義されるのです
g(z)=(z-π/2)tan(z)
は
z=π/2で正則なので
z=π/2は特異点ではないし
g(z)のz=π/2での留数は
コーシーの積分定理から
正則関数の積分は
0
だから
Res(g,π/2)
={1/(2πi)}∫[|z-π/2|=r]g(z)dz
={1/(2πi)}∫[|z-π/2|=r](z-π/2)tan(z)dz
=0
となるから
その指示は間違っています
No.1
- 回答日時:
g(z)=(z-π/2)tan(z)
g(π/2)=-1
はz=π/2で正則なので
g(z)のz=π/2での留数は
0
です
ありがとうございます。
「a(n) = 1/(n+1)! lim[z->π/2] (d/dz)^(n+1) [(z-π/2)tan(z)] に含まれるg(z)=(z-π/2)tan(z)の留数(residue)を求めるために、
g(z)をテイラー展開します。
展開した式から(z-π/2)の係数を取り出します。
取り出した係数を(n-1)!で割ります。」
と言う指示に従った上でg(z)=(z-π/2)tan(z)の留数を求めるまでの過程の計算を教えて頂けないでしょうか?
また、g(z)=(z-π/2)tan(z)の留数を求める上でなぜ取り出した係数を(n-1)!で割るのかを教えて頂けないでしょうか?
どうかよろしくお願い致します。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 tan(z)のローラン展開である tan(z)=a(-1)/(z-π/2)+a(0)+a(1)(z- 10 2023/11/09 13:11
- 数学 tan(z)をローラン展開して tan(z)=-1/(z-π/2)+(1/3)(z-π/2)+… と 14 2023/01/17 10:33
- 数学 「tan(z)の特異点z=π/2は1位の極なので g(z)=tan(z)/(z-π/2)^(n+1) 19 2023/12/24 05:27
- 数学 tan(z)のローラン展開は tan(z)=-1/(z-π/2)+a(2) (z-π/2)^2+・・ 5 2023/06/02 20:51
- 数学 2024.4.22 09:12にした質問の2024.4.22 13:10に頂いた以下の解答について質 2 2024/04/30 07:19
- 工学 画像より、 n≧-1の時、 a(n)=(1/(2πi)∮_[C]{g(z)}dzと res(g(z) 1 2023/06/09 07:53
- 数学 こちらの式はtan(z)のローラン展開の式です。 tan(z) =a(-1)/(θ-π/2)+a(0 6 2024/04/22 09:12
- 数学 tan(z)を=/2を中心にローラン展開する上で、 z=π/2+0.001として、 tan(z)をロ 7 2023/03/03 06:24
- 数学 a(n)=1/(n+1)! lim[z->π/2](d/dz)^(n+1)(z-π/2)tan(z) 14 2024/04/07 03:42
- 数学 過去に保存したメモに 「g(z)は|z-π/2|<πで正則だから z=π/2の時{|z-π/2|=| 3 2024/01/04 11:37
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
人生最悪の忘れ物
今までの人生での「最悪の忘れ物」を教えてください。 私の「最悪の忘れ物」は「財布」です。
-
モテ期を経験した方いらっしゃいますか?
一生に一度はモテ期があるといいますが、みなさんどうですか? いまがそう! という方も、「思い返せばこの頃だったなぁ」という方も、よかったら教えて下さい。
-
集合写真、どこに映る?
あなたが集合写真を撮られるとき、画角のどのあたりにいることが多いですか? 私は振り返ってみると右の端にいることが多い気がします。
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
数学の積分の長さについての質問です。 x=a(θ-sinθ) y=a(1-cosθ) (0<=θ<=
数学
-
『笑わない数学 微分積分』のΔxについて
数学
-
数学的帰納法の意味・意義について
数学
-
-
4
和の公式
数学
-
5
素数発見の新記録 実用面で何か意義があるものでしょうか
数学
-
6
載せた画像の2つの式は間違っていますが、 「特異点における残差は、ローラン展開の係数 c_{-1}
数学
-
7
何回かくじを引いて当たる確率
数学
-
8
ベクトル値関数の極限
数学
-
9
質問したい事が2つあります。 ①、以前に質問した2024.5.8 08:24の質問の2024.5.9
数学
-
10
解析学で使う波面集合と言うのが良く分からないのですが、円錐形なわけですよね?リンクのWikipedi
数学
-
11
積分について
数学
-
12
a³+b³+c³<abcとなるa,b,cの条件を教えてください
数学
-
13
3の問題について教えて下さい sin2x = 0,1/2 の定義域が 0 < 2x < 2になる理由
数学
-
14
f(x)=f(x²)はどんなグラフになりますか?
数学
-
15
数3の質問です。 極限値を求めよ。 この問題で最初の式を割るxして解いてはいけない理由はなんですか?
数学
-
16
長方形の対角線の頂点を合わせた折り目はなぜその対角線の垂直二等分線になるのですか?
数学
-
17
解説3行目。なぜ4でわって3余る素因数が存在しないことが言えているのでしょうか。
数学
-
18
続・対数積分について
数学
-
19
ベクトル
数学
-
20
命題がわかりません!!
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「黒歴史」教えて下さい
- ・2024年においていきたいもの
- ・我が家のお雑煮スタイル、教えて下さい
- ・店員も客も斜め上を行くデパートの福袋
- ・食べられるかと思ったけど…ダメでした
- ・【大喜利】【投稿~12/28】こんなおせち料理は嫌だ
- ・前回の年越しの瞬間、何してた?
- ・【お題】マッチョ習字
- ・モテ期を経験した方いらっしゃいますか?
- ・一番最初にネットにつないだのはいつ?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
a(n) = 1/(n+1)! lim[z->π/2] (...
-
分数不等式の問題です (x^2+2x-...
-
f(x,y)=x^3+y^3 条件x^2+y^2=1...
-
半径1の円の面積がπになること...
-
ある数式の極限
-
判別式
-
数学科1年のものです。 現在、...
-
底辺の半径r、高さhの円錐の断...
-
何回かくじを引いて当たる確率
-
『笑わない数学 微分積分』のΔx...
-
7の不思議
-
連続群論入門(山内、杉浦)III...
-
f(x) =√(x ^ 2 + 1) + 2 - x/a...
-
t=14+7s/2 s = -4a-4/3a+2 のと...
-
半径13.4、高さ10.2cmの円柱を...
-
写像を勉強したいのですが、高...
-
数学1の質問です。 三角形ABCに...
-
区間[-π、π]で定義された関数f(...
-
x,yが3つの不等式 y≧5/3x+5, y≧...
-
-x²+4x=0 -x²-x+2=0 こ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
小学1年生とか2年生に、「1+1っ...
-
載せた画像の2つの式は間違って...
-
0⁰再び
-
大学数学 質問です 上限、下限...
-
exp(x)の微分が
-
熱伝導拡散方程式で ∂u/∂t=k∂^2...
-
関数等式の問題です。
-
f(x) =√(x ^ 2 + 1) + 2 - x/a...
-
問題は上の写真の式を満たす正...
-
境界条件u(0、t)=0、u(2、t)=0 初...
-
t=14+7s/2 s = -4a-4/3a+2 のと...
-
数学の問題です。生成AIの解答...
-
高校数学において(dx/dt)×dt=dx...
-
中3数学因数分解について
-
=って逆も正しくないとダメで...
-
例えば和算は、タイムマシンを...
-
x,yが3つの不等式 y≧5/3x+5, y≧...
-
-x²+4x=0 -x²-x+2=0 こ...
-
「普通のサイコロ」で連続して4...
-
オイラーの公式
おすすめ情報
はぜ取り出した係数を(n-1)!で割るのかわかりません。
どうか理由を教えて頂けないでしょうか。
g(z)=(z-π/2)tan(z)がz=π/2の時、
g(π/2)=-1となる為、
g(z)=(z-π/2)tan(z)はz=π/2の時、正則となり、留数は0になる事は、
https://batapara.com/archives/laurent-and-residu …のサイトの画像よりわかりました。
ありものがたりさんから頂いた
「「この方法によって、『何の』留数を求めることができる」のかを
書かないから、話が食い違うんですよ。」から始まる解答はg(z)=(z-π/2)tan(z)のz=π/2における留数を質問文中の「方法」で求めた解答ではなく、
f(z)=tan(z)のz=π/2における留数を質問文中の「方法」で求めた解答なのでしょうか?
仮にそうならば、g(z)=(z-π/2)tan(z)のz=π/2における留数を質問文中の「方法」で求めた解答を頂きたいです。
どうかよろしくお願い致します。
ありものがたり様に質問したいのですが、
質問の
「a(n) = 1/(n+1)! lim[z->π/2] (d/dz)^(n+1) [(z-π/2)tan(z)] に含まれるg(z)=(z-π/2)tan(z)の留数(residue)を求めるために...留数を求めることができます。」
のやり方は、
「一般に関数 f(z) が z=c に n 位の孤立した極を持つとき
Res[ f(z), z=a ] を求める方法を f(z)=tan z, c=π/2, n=1 に適用したもの
になっている。だから、
Res[ tan z, z=π/2 ] を求める計算として正しく、
Res[ g(z), z=π/2 ], g(z)=(z-π/2)(tan z) を求める計算としては正しくない。」
となぜわかったのでしょうか?
どうかわかった理由をわかりやすく教えて頂けないでしょうか。