No.5ベストアンサー
- 回答日時:
|AB|=32
|AD|=48
|CM|=24
|CF|=x
とすると
|FM|=|DF|=32-x
|CF|^2+|CM|^2=|FM|^2
x^2+24^2=(32-x)^2
x^2+24^2=32^2-64x+x^2
↓両辺に64x-x^2-24^2を加えると
64x=32^2-24^2
64x=(32+24)(32-24)
64x=8(4+3)8(4-3)
↓両辺を64で割ると
x=7
No.3
- 回答日時:
訂正 計算間違いでした
三平方の定理から
CF=x と置けば
CF^2 +MC^2=FM^2
∴ x^2 +(48/2)^2=(32 - x)^2
x^2 +24^2=32^2 - 2・32x +x^2
32x=32・16-24・12=512-288=224
∴ CF=x=224/32=7 cm
No.2
- 回答日時:
三平方の定理から
CF=x と置けば
CF^2 +MC^2=FM^2
∴ x^2 +(48/2)^2=(32 - x)^2
x^2 +24^2=32^2 - 2・32x +x^2
32x=24・12+32・16=288+512=800
∴ CF=x=25
No.1
- 回答日時:
こちらにちょうど図が8分の1になっている問題についての質問&回答があります。
参考になると思いますよ。
↓
三平方の定理教えてください。 - 縦が4cm横が6cmの長方形abc... - Yahoo!知恵袋
https://detail.chiebukuro.yahoo.co.jp/qa/questio …
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
あなたの「必」の書き順を教えてください
ふだん、どういう書き順で「必」を書いていますか? みなさんの色んな書き順を知りたいです。 画像のA~Eを使って教えてください。
-
人生最悪の忘れ物
今までの人生での「最悪の忘れ物」を教えてください。 私の「最悪の忘れ物」は「財布」です。
-
みんなの【マイ・ベスト積読2024】を教えてください。
積読、ついついしちゃいませんか?そこでみなさんの 「2024年に買ったベスト積読」を聞きたいです。
-
テレビやラジオに出たことがある人、いますか?
テレビやラジオに取材されたり、ゲスト出演したことある方いますか?
-
「これいらなくない?」という慣習、教えてください
現代になって省略されてきたとはいえ、必要性のない慣習や風習、ありませんか?
-
半径1の円の面積がπになることを、積分を用いて示せという問題について質問です。この円はy=√1-x^
数学
-
f(x)=f(x²)はどんなグラフになりますか?
数学
-
60進法?について 最近、未経験から事務のアルバイトを始めました。 労務や総務系の事務なので従業員の
数学
-
-
4
3分の-6+-√3ってもっと簡単に出来ましたっけ? 私なら、-2+-√3になったのですが!
数学
-
5
2x+4y-2 4x+18y+6 の連立方程式って(-3.1)であってますよね? 答え確認したら(3
数学
-
6
ピタゴラスの定理
数学
-
7
ピタゴラスの定理(2)
数学
-
8
7の不思議
数学
-
9
何回かくじを引いて当たる確率
数学
-
10
『笑わない数学 微分積分』のΔxについて
数学
-
11
あるイベントの今回の入場者数が、前回比155%で約5万3000人だったとします。 前回の入場者数は、
数学
-
12
中途半端な数の単位の呼び方
数学
-
13
内積計算の順番について
数学
-
14
185cmをフィートとインチに直すと、6フィート0.83インチですが、中には6フィート0 3/4と"
数学
-
15
数列が全然わかりません 基礎問題精講で数列を解いているのですが 初見では、ほぼどの問題も解けません。
数学
-
16
数学 図形 「同一直線上にない3点を通る平面はただ1つ存在する」というのは平面の「定義」ですか?それ
数学
-
17
15cmは...何センチ?
数学
-
18
1の100乗、2の100乗、~100の100乗をそれぞれ12で割った余りのうちことなるものは何通りか
数学
-
19
0 < a < 1のとき、log(a)bとlog(b)aの大小を比較せよ。 こちらの問題のbの取る値
数学
-
20
△ABCで変の長さを求める問題を教えてください。 ⑴ b=8、C=5、A=60°のときaの値 ⑵ a
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・あなたの人生で一番ピンチに陥った瞬間は?
- ・初めて見た映画を教えてください!
- ・今の日本に期待することはなんですか?
- ・【大喜利】【投稿~1/31】『寿司』がテーマの本のタイトル
- ・集中するためにやっていること
- ・テレビやラジオに出たことがある人、いますか?
- ・【お題】斜め上を行くスキー場にありがちなこと
- ・人生でいちばんスベッた瞬間
- ・コーピングについて教えてください
- ・あなたの「プチ贅沢」はなんですか?
- ・コンビニでおにぎりを買うときのスタメンはどの具?
- ・おすすめの美術館・博物館、教えてください!
- ・【お題】大変な警告
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
2025.1.3 20:14にした質問で更...
-
SPIの問題で解答解説に納得がで...
-
この問題角度Θで切って底面の面...
-
三角関数の「ネーミング」につ...
-
【中学数学】公立高校入試問題...
-
これの答えはなぜ、A、C、E...
-
xは自然数で(3,10)の範囲に存在...
-
隣接属性を数学的に表現したい ...
-
不等式の問題でわかりません… ...
-
導関数が存在する、とはどうい...
-
a(n) = 1/(n+1)! lim[z->π/2] (...
-
ピタゴラスの定理(2)
-
数学者の皆様へ質問です
-
数列の畳み込み和
-
ヘロンの公式
-
訂正:相対論は光を構成する場...
-
計算です
-
合成関数 f(f(x))=g(x)とおくと...
-
数学 不等式の問題です。 ⑴を元...
-
300億円の部屋を、時給1000円の...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
a(n) = 1/(n+1)! lim[z->π/2] (...
-
2025.1.3 20:14にした質問で更...
-
タイヤの直径が40cmの一輪車が...
-
ピタゴラスの定理(2)
-
『笑わない数学 微分積分』のΔx...
-
じゃがいも、タマネギ詰め放題
-
半径1の円の面積がπになること...
-
【数学の相談です】 √12+6√3 の...
-
数学の問題です。 今、微分の問...
-
なぜこのように極座標に変換で...
-
内積計算の順番について
-
【数学】 この問題の解き方が分...
-
185cmをフィートとインチに直す...
-
七回やっても計算合わない
-
確率分布
-
何回かくじを引いて当たる確率
-
2x+4y-2 4x+18y+6 の連立方程式...
-
ナブラ▽ と行列の内積について...
-
f(x,y)=x^3+y^3 条件x^2+y^2=1...
-
二次関数の図形の移動について
おすすめ情報