化学系の学部にいるので数学は不得意なのですが,誰か教えて下さい。
ラプラシアンを2次元直交座標から2次元極座標に変換する場合
直交座標(x,y),極座標(r,θ)とすると,
x=rcosθ,y=rsinθ・・・(1)からδ/δx,δ/δyを求める時,参考書によると
r^2=x^2+y^2,tanθ=y/x・・・(2)
δ/δx=(δ/δr)(δr/δx)+(δ/δθ)(δθ/δx)
δ/δy=(δ/δr)(δr/δy)+(δ/δθ)(δθ/δy)・・・(3)
(2)をxで微分すると
2r(δr/δx)=2x=2rsinθ
(1/(cosθ)^2)(δθ/δx)=-(y/x^2)=-(sinθ/r(cosθ)^2)
より
δr/δx=cosθ,δθ/δx=-(1/r)sinθ
同様に
δr/δy=sinθ,δθ/δy=(1/r)cosθ
以上の関係を(3)に入れれば,
δ/δx=cosθ(δ/δr)-(1/r)sinθ(δ/δθ)
δ/δy=sinθ(δ/δr)+(1/r)cosθ(δ/δθ)となります。
これで,合っていいるのですが,初めて,私がこの問題を考えた時,
(1)をそれぞれ,rとθで偏微分しました。
δr/δx=1/cosθ,δθ/δx=-(1/rsinθ)
δr/δy=1/sinθ,δθ/δx=(1/rcosθ)となりsinθ,cosθの項が
正解と逆転してしまい,異なる結果となってしまいました。
私は,どちらの方法でも同じになると思っていたのですが,
どうして,違うのですか誰か分かりやすく教えて下さい。

A 回答 (2件)

座標変換や偏微分を教えていると,よくお目にかかる例です.



偏微分の記号は JIS にありますので∂を使うことにします.

本質は redbean さんが書かれているとおりで,
∂r/∂x を計算するとき,何を一定として計算するかの問題です.
通常,独立変数は (x,y) の組,あるいは(r,θ)の組ですから,
x で偏微分するときは y 一定でやるのが常識的です.
つまり,r = √(x^2 + y^2) として,
(1)  ∂r/∂x = x/√(x^2 + y^2) = r cosθ/r = cosθ
です.
一方,r = x/cosθ と考えてθ一定で偏微分すると
(2)  ∂r/∂x = 1/cosθ
となって,(1)(2)では分母分子が逆転してしまいます.

偏微分のときに一定に保った変数を下付で書くのはご存知ですよね.
熱力学でいやと言うほど出てきます.
これを明確に書くなら,
(1)は (∂r/∂x)_y を計算しているのに対し,
(2)は (∂r/∂x)_θ を計算しています.
偏微分の際に一定に保った変数が違うのですから,結果が違っても不思議はありません.

図を描くと状況がもっと明確になります.

     y
   
     │        Q'
     │       /
     │      /
     │     /
     │    P───Q
     │   /
     │  /  R
     │ /
     │/θ
     └────┬───┬─ x
    O     │ dx │

P点から出発して,x を dx だけ増やしたときに,
y 一定ならQ点に行きますが,θ一定ならQ'点に行きます.
このときの r の変化は,
y 一定なら(ほぼ)QR(RはPからOQへの垂線の足,PR がここではうまく描けません),
θ一定なら PQ' です.
△PQQ' と △QRP は相似ですから,QR:PQ = PQ:PQ' = cosθ:1,
すなわち,PQ'/QR = 1/cos^2 θ です.
この因子がちょうど(1)(2)で cos^2 θ倍違うことに相当しています.
    • good
    • 2
この回答へのお礼

redbeanさんに加えて,さらに具体的な図を使った説明非常にわかりやすかったです,これからもよろしくお願いします。

お礼日時:2001/11/04 22:37

∂r/∂x の意味は、x (およびその他)を独立変数、


r を従属変数としたとき、r を x で偏微分したもの、
ということです。

x=rcosθ は r ,θを独立変数、x を従属変数とする
x(r,θ)=rcosθ の意味です。

これを
r=x(r,θ)/cosθ
と書き換えてみたところで、x が独立変数になるわけ
ではありませんから、このまま ∂r/∂x を求めることは
できません。r=r(x,y) の関数形を明らかにすることが
先になります。
    • good
    • 0
この回答へのお礼

核心をついた説明ありがとうございます。また,質問をした時は,よろしくおねがいします。

お礼日時:2001/11/04 22:34

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底,{y1,y2,y3}がその双対基底でx=(0,1,0)の時,y1(x),y

[問] ベクトルx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底とする。
{y1,y2,y3}がその双対基底でx=(0,1,0)の時、
y1(x),y2(x),y3(x)を求めよ。

という問題の解き方をお教え下さい。

双対基底とは
{f;fはF線形空間VからFへの線形写像}
という集合(これをV*と置く)において、
V(dimV=nとする)の一組基底を{v1,v2,…,vn}とすると
fi(vj)=δij(:クロネッカーのデルタ)で定めるV*の部分集合
{f1,f2,…,fn}はV*の基底となる。これを{v1,v2,…,vn}の双対基底と呼ぶ。

まず、
C^3の次元は6(C^3の基底は(1,0,0),(0,1,0),(0,0,1),(i,0,0),(0,i,0),(0,0,i))
だと思うので上記のx1,x2,x3は基底として不足してると思うのです(もう3ベクトル必要?)。

うーん、どのようにしたらいいのでしょうか?

Aベストアンサー

>C^3の次元は6(

これが間違え.
「x1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底」
といってるんだから,係数体はRではなく,C.

あとは定義にしたがって,
dualな基底を書き下せばいいだけ.
y1(x1)=1,y1(x2)=y1(x3)=0であって
v=ax1+bx2+cx2と表わせるわけだし,
v=(v1,v2,v3)とすれば,a,b,cはv1,v2,v3で表現できる
#単なる基底変換の問題.

Q∫∫【D】2x|y|dxdy, D={x^2+y^2≦1,x^2+y^2≦2x}

∫∫【D】2x|y|dxdy, D={x^2+y^2≦1,x^2+y^2≦2x}
という重積分について質問です。∫∫【D】2x|y|dxdyと∫∫【D】2xydxdyってどう違いますか?

この場合では、領域がx軸に関して対称だから、前者の場合も後者の場合もたまたま答えが同じになるけれど、理屈としては、y座標が負になっている部分をx軸に関して折り曲げた結果として、図形がx軸に関して対称だったために、y座標が正の部分を2倍することになったと考えればよいのでしょうか?
言葉が下手で、伝わりにくい文章ですみません。

Aベストアンサー

>この場合では、領域がx軸に関して対称だから、前者の場合も後者の場合もたまたま答えが同じになるけれど

本当にそうなります?
2xyはyについて奇関数、2x|y|はyについて偶関数です。
前者をx軸について対称な領域で積分すると"0"に、後者を同じ領域で積分するとx軸よりも上側の領域での積分の2倍になります。

Q「(5x+3)^10でx^pとx^(p+1)の係数比が21:20になる時のpの値」と「x+y=1を満たす全x,yに対してax^2+2bxy+by^2

こんにちは。識者の皆様、宜しくお願い致します。

[問1] (5x+3)^10の展開式でx^pとx^(p+1)の係数比が21:20になる時のpの値を求めよ。
[問2]x+y=1を満たす全てのx,yに対して
ax^2+2bxy+by^2+cx+y+2=0が成立するように定数a,b,cの値を定めよ。

[1の解]
(5x+3)^10=10Σk=0[(10-k)Ck 5x^(10-k)3^k]なので
p=10-kの時(k=10-pの時)
p+1=10-kの時(k=9-pの時)より
a:b=pC(10-p) 5^p 3^(10-p):(1+p)C(9-p) 5^(1+p) 3^(9-p)
で 1/(10-p):(1+p)/(2p-8)/(2p-9)=7:4 から
23p^3-199p+218=0
となったのですがこれを解いてもp=6(予想される解)が出ません。
やり方が違うのでしょうか?

[2の解]
与式をx+yという対称式で表せばならないと思います(多分)。
どうすれば対称式で表せるのでしょうか?

Aベストアンサー

 (1)Cをばらして比を簡略化するところで計算間違いがありそうな気がします。その経過をもう少し詳しく書いてもらえませんか?
 (2)a,b,cを求めるにはまず、x+y=1 を満たすすべての(x,y)で成り立つのですから、x+y=1を満たす(x,y)をまず代入してみてはどうでしょうか。候補としては、(1,0)(0,1)(2,-1)など。
 それから計算されたa,b,c でx+y=1を満たすすべてのx,yで成り立つかどうかを確認するという手順でどうでしょうか?

Q座標(x,y)から座標(x2,y2)を頂点としてとおり座標(x3,y3)と交わる放物線?

現在プログラムを作成しているのですが、とあるグラフを表示して
欲しいと言われ困っています。

ニーズは 任意の座標(x,y)と座標(x3,y3)を放物線で記すこと。
ただし、この放物線はxからx3の間隔の8:2の場所に頂点(x2,y2)が
あること。 です。

すなわち・・・
(x,y)が(0,50)で(x3,y3)が(100,25)なら 頂点(x2,y2)は(80,?)に
あるグラフです。

そもそも、こんなグラフを式でかけるんでしょうか?
かけるとしたらどんな式で書けばいいのか教えてください。

条件としては
必ず x<=x3 , y>=y3 , xとx3の間隔は最低100です。

いろいろ参考書とか見てみたのですが、ギブアップです。
お助けください。

Aベストアンサー

>(x,y)が(0,50)で(x3,y3)が(100,25)なら 頂点(x2,y2)は(80,?)にあるグラフです。......

頂点とは、放物線とその対称軸との交点だとしましょう。
また、放物線の回転を許容します。

試している暇が無いので、筋書きだけ。

(1) (0,50) と (100,25) を結ぶ線分に、その中点で直交する直線 Lc を引く。
(2) 直線 Lc と直線 x=80 の交点を求める。そこを放物線の頂点 Pc とする。(交点が存在しないことあり)
(3) (0,50), (100,25), Pc を通る放物線が所望の放物線。

あとはフォローして。

Qx>0,y>0,z>0 で、x^2+y^2+z^2=a^2のとき、

x>0,y>0,z>0 で、x^2+y^2+z^2=a^2のとき、
xy+yz+zxの最大値を求めよ。

コーシーシュワルツの不等式を使うとでるとおもうが、
別解での解答はどうなるのか。よろしくお願いします。

Aベストアンサー

どういう風にシュワルツを使うのか。。。。。w
そんな仰々しいものを持ち出さなくても、教科書に載ってる不等式(絶対不等式)で用が足りる。



x、y、zは実数から、x^2+y^2+z^2≧xy+yz+zx で終わり。
等号は、x>0,y>0,z>0から、x=y=z=a/√3の時。


人気Q&Aランキング

おすすめ情報