D:エイチバー
   α:√(mω/D)
   q:αx
1次元調和振動子のn=0の場合の固有関数
 φ0(x)=(mω/πD)^1/4×exp(-q^2/2) 
    =(mω/πD)^1/4×exp(-mωx^2/2D)
を使って
 位置の期待値 <x>=∫x│φ0*│^2 dx
 運動量の期待値 <Px>=∫φ0*(-iDd/dx)φ0 dx
 位置の二乗の期待値 <x^2>=∫x^2│φ0│^2 dx
 運動量の二乗の期待値 <Px^2>=∫φ0*(-iDd/dx)^2φ0 dx
の4つを計算したいのですが、ややこしくて出来ません。
どなたか、計算してみてください。
因みに、答えは『0、0、D/2mω、mωD/2』になる筈です。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

vortexcore さんの書かれているように


> ややこしくて出来ません
の具体的内容を書かれた方が回答も書きやすいでしょう.

期待値を求める方法はご存知のようですから,あとは積分だけですね.
<x> と <Px> は本質的に

(1)  ∫{-∞~+∞} t exp(-t^2) dt

の計算ですね(t = q/√2).
これは t^2 = z とおけばすぐに計算ができます.
でも,Umada さんご指摘のように,奇関数の{-∞~+∞}積分ですから,
計算するまでもなく答はゼロです.
調和振動子は右に行ったり左に行ったりの繰り返しで,
対称性を考えれば位置も運動量も正の場合と負の場合が同じ確率で現れますから,
期待値はゼロ,というのが物理的意味です.

<x^2> と <Px^2> の期待値の計算では

(2)  ∫{-∞~+∞} exp(-t^2) dt
(3)  ∫{-∞~+∞} t^2 exp(-t^2) dt

の計算が必要です.
(2)は有名な積分(ガウス積分)で √π であることが知られています.

(2')  ∫{-∞~+∞} exp(-t^2) dt = √π

(2')で,t^2 = az^2 とおきますと

(2'')  ∫{-∞~+∞} exp(-az^2) dz = √(π/a)

となり,(2'')の両辺を a で微分してから a=1 とおけば

(3')  ∫{-∞~+∞} z^2 exp(-z^2) dz = (1/2) √π

が得られます.これで(3)の積分は解決.
あとは係数の調整だけですので,
自分で手を動かしてみてください(これが大事です).

Umada さんの言われるように,x と Px の線形結合を使った演算子を用いると
簡単ですが,たしかに概念的にとっつきにくい気はします.

調和振動子では運動エネルギーの期待値とポテンシャルエネルギーの期待値が
等しいこと,および基底状態のエネルギーが (1/2)Dω であること,
を使ってよいなら,

(4)  <Px^2>/2m = (1/4)Dω  (運動エネルギー期待値)
(5)  (k/2) <x^2> = (1/4)Dω    (ポテンシャルエネルギー期待値)

です.k はばね定数で,ω^2 = k/m.
(4)=(5) で,(4)+(5) が(1/2)Dωになっています.
これから簡単に <Px^2> と <x^2> が出ますね.
でも,これは反則かな?

おまけに(2')の導出(よく本に載っています):

(6)  I = ∫{-∞~+∞} exp(-t^2) dt

として

(7)  I^2 = ∫{-∞~+∞} exp(-t^2) dt ×∫{-∞~+∞} exp(-y^2) dy
      = ∫{-∞~+∞} dx∫{-∞~+∞} dy exp{-(x^2+y^2)}
      = ∫{r=0~+∞} ∫{θ=0~2π} exp(-r^2) r dθ dr
      = 2π ∫{r=0~+∞} exp(-r^2) r dr
      = π

から(2')が直ちにわかります.
(7)で2行目から3行目に移るところは,
(x,y) 座標から (r,θ) の極座標に変換しました.
    • good
    • 1

vortexcoreさんのおっしゃるように、1次元調和振動子の問題の解き方は量子力学の教科書・演習書ならまず大抵載っています。

ですからそれを見るのが早いです。
exp(-x^2)が入っているのが厄介のタネですよね。この形が出てきたら数学公式集の力を遠慮なく借りるべきです。
なお位置と運動量については既に答えの見当も付いていますし、関数の対称性(積分の中身が奇関数)を使えば実際の積分はしなくても答えは0と求められますよね。

もう一つは演算子を用いる方法です。演算子の考え方は最初はとっつきにくいですが、波動関数φn(x)の直交性をうまく使うことで積分は全く行わず、驚くほど簡単に解を求めることができます。教科書の2ページ分くらいの量ですがここではちょっと書き切れませんのでご自身で教科書・演習書を読んでみて下さい。
私がいま手許で調べたのは 小出昭一郎, 基礎物理学選書5A「量子力学(I)」, 裳華房(1969) です。一次元調和振動子で<x^2>を求める例題が載っていました(p. 44)。
    • good
    • 0

サイエンス社の藤原、岡崎著「演習量子力学」(黄色い本)の37ページに(一般的な場合の)答えがありますので、レポートの答えならここを写せば良いのではないでしょうか。

ただ、教官というのはたいていの参考書はパラパラと読んでるので、丸写しではばれると思いますが。

積分のどの部分が解らないのか書いていただければ、具体的なアドバイスが出てくると思います。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q指数関数の積分なのですが、、、

∫exp(-ax^2)dx を積分したいのですができません。
どうか、おしえてください。
僕は大学生なのですが、ゼミでいきなりこれを解けといわれて困っています。
よろしくおねがいします。
あと円筒関数を使っても解いていただけたら助かります。

Aベストアンサー

不定積分でしょうか?
不定積分なら初等関数では表現できないことが知られています.

-∞~∞,あるいは 0~∞ の定積分ならできます.
∫{-∞~∞} exp(-ax^2)dx = √(π/a)
です.ただし,a>0 です(これでないと定積分が発散します).
導出は
http://oshiete1.goo.ne.jp/kotaeru.php3?q=185532
の私の回答をご覧下さい.

円筒関数云々はちょっと意味が分かりません.

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q量子力学の期待値の問題です

波動関数φ(x)=C*exp(-x^2/2a^2)から不確定性関係を導く問題です。
運動量のp^2の期待値<p^2>の計算がわかりません


<p^2>=∫φ(x)'*p^2*φ(x)    *φ'(x)は共役複素数

=|c|^2*(-ih) ∫(d^2/dx^2) exp(-x^2/a^2) dx

=|c|^2*(-ih)*(4/a^4) ∫x^2* exp(-x^2/a^2) dx



ここで |C|^2=1/a√π (規格化より求めた)
∫x^2* exp(-x^l2/a^2) dx=(a^3*√π)/2
を代入して

<p^2>= -2ih   


以上のようになったのですが、間違っている気がしてなりません。
間違いがあったらご指摘お願いします。

Aベストアンサー

p=ih/(2π)d/dx
をそのまま入れてしまえばよいのです。

<p^2>=∫φ'(x)p^2φ(x)dx
=∫φ'(x){-h^2/(2π)^2}d^2/dx^2φ(x)dx

となります。
h^2となっていないこと(そうでないと次元が合わない)から間違いであることは明らか。
虚数単位iの2乗されるため-1になり残りません。

さらに質問者の式では微分演算d^2/dx^2が|φ(x)|^2にかかっています。
微分演算d^2/dx^2がかかるのはあくまでφ(x)だけですのでこれも間違い。このため係数も違います。
φ'(x)p^2φ(x)とp^2|φ(x)|^2は違うものなのです。φ'(x)p^2φ(x)=|pφ(x)|^2となります。pが(エルミート)演算子であることをお忘れなく。

Q一分子の基底状態と励起状態の縮退度の求め方

1辺aの立方体に質量mの内部構造のないNコの同種粒子からなる気体がある。
一粒子のエネルギー準位は次のように書ける。
E=h・h(nx・nx+ny・ny+nz・nz)/(8ma・a)
hはプランク定数。nx,ny,nzは自然数。

という問題で
「一分子の基底状態と励起状態の縮退度はそれぞれいくらか」
というのがテストで出たんですがわかりませんでした。
答えあわせをしてくれないので困ってます。
どなたかわかる方いませんか?教えてください(泣

Aベストアンサー

例によって答を教えてくれない先生ですか.
どうも困ったもんですね~.

同じエネルギーの値に対して状態がいくつあるかが縮退度です.
状態は 自然数の組 nx, ny, nz の組で指定されます.

最低エネルギーの状態(基底状態)はもちろん,nx = ny = nz = 1 の
ただ1通りだけ.
したがって基底状態の縮退度は1.

最初の励起状態は,nx,ny,nz のうち1つが2,残り2つが1というやつで
nx^2 + ny^2 + nz^2 = 6
ですね.
nx,ny,nz のうちどれかが2だというのだから,3通りの可能性があります.
すなわち,縮退度は3.

2番目の励起状態は,nx,ny,nz のうち2つが2,残り1つが1というやつで,
これも3通りの可能性があるから,縮退度は3.

つまり,エネルギーを決めると,nx^2 + ny^2 + nz^2 が決まるので,
これに対応する nx,ny,nz の選び方の数が縮退度です.
一般の nx^2 + ny^2 + nz^2 を指定して選び方の数を求めるのはちょっと
複雑そうです.

幾何学的には,nx,ny,nz の3次元空間で,球の半径 nx^2 + ny^2 + nz^2 を
決めたとき,その球面が通る格子点の数はいくつか,と言う問題になっています.

通常は,a が十分大きいとして,エネルギーの連続極限をとってしまいますが,
そこらあたりまで要求されているんでしょうか?

それから,もし粒子が電子だとすると,nx,ny,nz を指定しても,
その他にスピンの自由度2があります.
スピンまで考慮すれば,縮退度は上の計算の2倍になります.

例によって答を教えてくれない先生ですか.
どうも困ったもんですね~.

同じエネルギーの値に対して状態がいくつあるかが縮退度です.
状態は 自然数の組 nx, ny, nz の組で指定されます.

最低エネルギーの状態(基底状態)はもちろん,nx = ny = nz = 1 の
ただ1通りだけ.
したがって基底状態の縮退度は1.

最初の励起状態は,nx,ny,nz のうち1つが2,残り2つが1というやつで
nx^2 + ny^2 + nz^2 = 6
ですね.
nx,ny,nz のうちどれかが2だというのだから,3通りの可能性があります.
...続きを読む

Qexp(f(x))の積分方法

もう一つ教えてください。
exp(f(x))の積分方法はどうやって計算するのでしょうか。
先ほど教えていただいた
http://www-antenna.ee.titech.ac.jp/~hira/hobby/symbolic/derive.html
にも載っていませんでした。

私が持っている微分積分の公式集ではexp(ax)=(1/a)e^axということしか載っていませんでした。
解る方お願いします。

Aベストアンサー

微分ができるのは、微分の結果を表す関数が定義された関数(初等関数と呼ばれている)だけで表現できるからです。
所が積分結果を表す関数が初等関数の中になければ積分結果を関数で表すことができません。つまり公式集に全ての初等関数の組み合わせで作られた関数の積分結果を表す関数が初等関数の組み合わせで書き表せないケースが多く存在します。つまり積分公式集に書けない関数が存在します。
e^(x^2), sin(k*cos(2x))などは積分結果を式で表現できません。
しかし関数が存在するわけですから数値積分や積分範囲が決められた定積分などは可能です。積分結果は数値として出てきます。
積分結果が初等関数で表せない場合の積分は、数値積分の他に、特殊関数(多くは積分形式で定義されていることが多い)で表す場合があります。

微分公式集は左の列に「微分される関数」、右の列に「微分結果」を書いてあります。
(不定)積分は微分の逆ですから、微分公式集の左の列と右の列を入れ替えて、左の列に「被積分関数」、右の列に「積分結果」と書けば済みます。
そうは言っても、使い安い微分公式集や積分公式集になるわけではありません。
左側の列には通常積分または微分したい関数の形で並べてないと使いやすい公式集といえません。
微分公式集の場合
e^f(x)→f'(x)e^f(x)
積分公式集の場合
f'(x)e^f(x)→e^f(x)
と形式上はなりますが
積分公式集の場合
xe^{(x^2)/2}→e^{(x^2)/2}
e^{(x^2)/2}→ nan
cos(x)e^sin(x)→e^sin(x)
(1/x)e^log(x)→e^log(x)
などを一覧に書き出しておけば使い物になります。

使いやすい積分公式集を作ってください。

微分ができるのは、微分の結果を表す関数が定義された関数(初等関数と呼ばれている)だけで表現できるからです。
所が積分結果を表す関数が初等関数の中になければ積分結果を関数で表すことができません。つまり公式集に全ての初等関数の組み合わせで作られた関数の積分結果を表す関数が初等関数の組み合わせで書き表せないケースが多く存在します。つまり積分公式集に書けない関数が存在します。
e^(x^2), sin(k*cos(2x))などは積分結果を式で表現できません。
しかし関数が存在するわけですから数値積分や積...続きを読む

Q分配関数(状態和)がわかりません。

統計力学とかで出てくる分配関数(状態和)がありますが、物理的な意味がよくわかってません。
Σexp(-β・ei)とありますがどういう意味なんでしょうか?

またある問題でエネルギー準位ε=(n+1/2)hνのN個の独立な調和振動系子の系があり
この調和振動子一個に対する状態和が
Z=1/{2sinh(hν/2kB・T)}
となることを示せという問題があるんですが問題の意味すらよくわかりません。
一個に対する状態和?という感じです。
どうかお願いします。

Aベストアンサー

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというように表すことが出来ますね。
このときの状態和は
 Z=ΣP(x)
  =P(1)+P(2)+…+P(6)
  =6*1/6
  =1
ということになります。

>速度やモーメントならしっくりきますが状態というのは一体何なんでしょうか?
さいころで言うと状態は「1の目が出ること」などに対応します。
この場合は6つの状態を取り得ますね。

>一個に対する状態和?
粒子が一個であっても e_n =(n+1/2)hν という結果を見れば、
基底状態 e_0 = hν/2 の状態にあるかもしれないし、
励起状態の1つ e_1 = (1+1/2)hν = 3/2*hν のエネルギー状態にあるかもしれない、
というようにとり得る状態は1つではないことがわかります。
あとは、先のさいころの例と同様に
e_0 の状態にある確率が exp(-βe_0)
e_1 の状態にある確率が exp(-βe_1)
   :
ですからこれらの確率の無限和をとるだけです。


この質問とは関係ないですが、
その後、相対論の理解は進みましたか?

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというよう...続きを読む

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Qブリュアンゾーンの物理的な意味

 ブリュアンゾーンは、逆格子空間のウィグナーサイツセルとして定義されますが、物理的にはどんな意味があるのでしょうか。いまいち具体的なイメージがわきません。キッテルを使って勉強しているのですが、回りくどくてよくわかりません。
 さらに、フォノンの波数ベクトルが-π<Ka<-πに限定されると、なぜそこがブリュアンゾーンに対応しているのでしょうか。
 数式はキッテルに載っているので、できるだけ物理的な意味やイメージをお教えいただければと思います。よろしくお願いします。

Aベストアンサー

○ブリユアンゾーンがなぜ波数なのか?

#1で述べた通り、そもそも逆格子空間とは、波数空間なのです。ですから、その一部であるブリユアンゾーンも当然波数ですよね。

○なぜウィグナーサイツセルがブリルアンゾーンになるのか?

例えば、いきなり三次元で考えると難しいので、二次元(x-y平面)の正方格子で考えます。基本格子ベクトルa1,a2から実際に基本逆格子ベクトルb1,b2を計算してみてください。y軸方向のベクトルと、x軸方向のベクトルになったと思います。
基本逆格子ベクトルb1とb2を線形結合をとることにより、一般の逆格子ベクトルGが得られますが、ゼロベクトルを別とすれば、逆格子ベクトルGの中で大きさが最も小さいのは、b1,b2含めて全部で4つですよね。この4つのベクトルを原点から書いてみて下さい。
で、結論から言いますと、これらのベクトルの垂直二等分線で囲まれた領域(四角形)がブリユアンゾーンとなるわけですが、それは何故かを考えます。
いま、
(1)このような四角形を逆格子ベクトルだけ移動させて張り合わせていくと、全平面を埋め尽くすことができますよね。また、
(2)四角形の内側の点から逆格子ベクトルだけ離れた点はすべて四角形の外側にあることになります。(つまり、ブロッホ波の波数kの周期的な任意性による重複がこの四角形の中にないってこと。)
ブロッホ波の波数kの任意性の周期は基本逆格子ベクトルですから・・・・もうこの四角形の内部の点だけを考慮すればいいことになりますよね!だから、こうやって定義された四角形はブリユアンゾーンとなるわけです。

この考え方が他の構造にも適用できます。

○ブリユアンゾーンがなぜ波数なのか?

#1で述べた通り、そもそも逆格子空間とは、波数空間なのです。ですから、その一部であるブリユアンゾーンも当然波数ですよね。

○なぜウィグナーサイツセルがブリルアンゾーンになるのか?

例えば、いきなり三次元で考えると難しいので、二次元(x-y平面)の正方格子で考えます。基本格子ベクトルa1,a2から実際に基本逆格子ベクトルb1,b2を計算してみてください。y軸方向のベクトルと、x軸方向のベクトルになったと思います。
基本逆格子ベクトルb1とb2を線形...続きを読む

Qデルタ関数のポテンシャル

シュレーディンガーの式
[-(h^2/2m)(d^2/dx^2)+Vδ(x)]ψ(x)=Eψ(x)・・・★
の解のx=0での接続条件はどのように求めたらよいのでしょうか?

★の両辺を-εからεまで積分し、ε→0とすれば・・・、のような事をやれば、
ψ(+0)=ψ(-0)
ψ'(+0)-ψ'(-0)=αψ(0)
という感じになったと思うのですが、どうも上手くいきません。


1.∫[-ε→ε]d^2ψ/dx^2 dx =ψ'(+0)-ψ'(-0)となる理由
(結論を見る限り、d^2ψ/dx^2はx=0で(δ関数的に?)発散していますが、この場合にも微積分学の基本定理は成り立つのでしょうか?)

2.∫[-ε→ε]Eψ(x)dx=0となる理由
(要するに、ψがx=0で有限である理由です。ポテンシャルがδ関数で発散しているので、ψもx=0でおかしなことになっていない保証はない気がするので)

3.ψ(+0)=ψ(-0)となる理由
(もう一度何かを積分すれば導けた記憶はあるのですが)

の3つが分かれば、問題ないと思います。

シュレーディンガーの式
[-(h^2/2m)(d^2/dx^2)+Vδ(x)]ψ(x)=Eψ(x)・・・★
の解のx=0での接続条件はどのように求めたらよいのでしょうか?

★の両辺を-εからεまで積分し、ε→0とすれば・・・、のような事をやれば、
ψ(+0)=ψ(-0)
ψ'(+0)-ψ'(-0)=αψ(0)
という感じになったと思うのですが、どうも上手くいきません。


1.∫[-ε→ε]d^2ψ/dx^2 dx =ψ'(+0)-ψ'(-0)となる理由
(結論を見る限り、d^2ψ/dx^2はx=0で(δ関数的に?)発散していますが、この場合にも微積分学の基本定理は成り立つのでしょうか?)

2...続きを読む

Aベストアンサー

確かにeaternさんの疑問は誰もが感じる(べき)正しい疑問だと思います。つまりこういった異常なポテンシャルを持つ問題は取り扱いが難しいことが知られています。
私が学部でポテンシャルによる散乱問題を習った時には、問題を解く時の理論的なよりどころは連続の方程式だと習ったと覚えています。そのことは確かシッフの教科書にも議論があったと思います。(卒業の時に後輩にあげたので量子力学の教科書が手元にありませんので確認できませんが)

よって波動関数が連続である必要はまったく無いと思います。しかし大抵の教科書では簡単化のためといって、波動関数の連続性を”仮定”します。一般にはこういった異常なポテンシャル問題は量子力学的意味のある系かどうか自明でありませんから、取り合えず意味のある答えがあるかどうか計算してみようよというくらいの態度だと私は考えています。取り合えずその仮定を受け入れたします。

(1)φ(+0)=φ(-0)を仮定として受け入れる。

すると以下の事が導けます。

(2)∫dx d/dx(dφ/dx)=∫d(dφ/dx)=[dφ/dx]_{-0→+0}
=dφ(+0)/dx-dφ(-0)/dx


(3)一方でd/dx(dφ/dx)=(αδ(x)-E)φですから、0を含む微小領域[-ε,+ε]で積分してεをゼロにすると

∫dx(αδ(x)-E)φ=αφ(0) -Eφ(0)*2ε=αφ(0)

なので

dφ(+0)/dx-dφ(-0)/dx=αφ(0)

が導けます(Eも定数としましたが、これも必要ないかもしれません)。

(3)を際に波動関数が[-ε,+ε]で連続だという事を仮定したのでエネルギーに比例した項の積分は積分領域の幅×原点での波動関数で近似しましたが、結局積分領域がゼロの極限をとるとゼロです。波動関数が連続であれば微分が飛んでいても積分に何の問題もありません。
これは積分領域をx<0, x>0に分けて考えれば直感的にも納得いくでしょう。関数が滑らかでないところで積分領域を分けて考えると積分は二つの領域の和です。

最終的には量子力学で使う積分、ひいては物理で使う積分はるベールグ積分の意味で定義されていると見なすべきでしょう。私は難しい事は知りませんが、とりあえずは関数が折れ線や、さらには飛びがあっても、それが一点で起こっている限り積分測度はゼロなので大丈夫だと思います。
一点の効果は積分に利きません。もしも一点から有限の値があるいう風に積分が定義されているなら、任意の線分に実数は無限に存在するので積分は全て発散してしまいます。

(2)を導く際に、dφ/dxが連続でないと言っておきながら、更にその微分を積分するのはOKかという疑問があるでしょう。一階微分の飛びは原点の一点に限られますから、その二回微分も原点では定義されていません。しかし二回微分の値など知らなくても、やはり積分領域をx<0、x>0の二つにわけて積分すれば問題ないことが理解されると思います。なぜならやはり積分測度がゼロだからです。

と大体数学的にはかなりいい加減説明ですが、物理をやる上ではこれくらいの理解で良いのではないでしょうか。気になる場合にはるベールグ積分を勉強することになるんでしょう(数学を勉強したからといって物理の全てを厳密な方法で理解できるかどうかは疑問です)。


最後に(1)の仮定ですが、これは必ずしも必要ではありません。なぜなら量子力学の要請は確立密度

j=-i(φ*∂φ-φ∂φ*)     (∂=d/dx)

が連続であればよいことだけですから。異常なポテンシャルを解析する方法にはいくつかあるでしょうが、最も物理的なのは有限なポテンシャルの極限としてそれらを理解する事です。δ(x)ポテンシャルの場合ならそれは[-ε/2,+ε/2
で高さεを持つ階段型ポテンシャルのε→0極限として理解するとか。こういう理解では通常波動関数は連続で微分が飛びます。

確かにeaternさんの疑問は誰もが感じる(べき)正しい疑問だと思います。つまりこういった異常なポテンシャルを持つ問題は取り扱いが難しいことが知られています。
私が学部でポテンシャルによる散乱問題を習った時には、問題を解く時の理論的なよりどころは連続の方程式だと習ったと覚えています。そのことは確かシッフの教科書にも議論があったと思います。(卒業の時に後輩にあげたので量子力学の教科書が手元にありませんので確認できませんが)

よって波動関数が連続である必要はまったく無いと思います...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング