
cos66°やsin3°など、3の倍数の角度なら、複雑にはなるにしても、根号と四則演算で表すことが出来ます。しかし、cos40°といった3の倍数でないものがきた場合、和と積の変換公式を何度用いても、その値が導けません。そこで、半径1の円に内接する正九角形の一辺の長さxを求め、余弦定理を用いることによって、cos40°の値を求めようとしたのですが、その一辺の長さxを求めるにはどうしても三次方程式を解かなければならないことが分かりました。そのxが求まれば、数学的には全ての整数角のsin、cos、tanの値が求まることになります。何度も解くのに挑戦してみましたが、時間が過ぎていくだけでした。その三次方程式が次のものです。解xを教えて頂けないでしょうか。
(ちなみに近似値を小数で図形から求めるとx=0.684になりました。)
x^3-3x+√3=0
No.3ベストアンサー
- 回答日時:
3次方程式の解の公式(カルダノの公式)を利用すれば、解の表示はできます。
たとえばwiki(参考URL)をご利用ください。求めるといっても、複素数の立方根が混じった式であるので、あまりありがたみはないかも知れません。これ以上の還元はできないのでこれで満足するぐらいでしょうか。ちなみに上記の3次方程式は3つの実数解をもち、それぞれ、1/((i-√3)/2)^{1/3}+((i-√3)/2)^{1/3}
-(1-i√3)/(2^{2/3}(i-√3)^{1/3})-((i-√3)/2)^{1/3}(1+i√3)/2
-((i-√3)/2)^{1/3}(1-i√3)/2-(1-i√3)/(2^{2/3}(i-√3)^{1/3})
です。近似値を出しておくと上から順に
1.2855752194
0.6840402867
-1.9696155060
となるようです。蛇足ですが、
Cos[40°]=(((-1-i√3)/2)^{1/3}+((-1+i√3)/2)^{1/3})/2
です。3乗根は決して外れません。したがって定規とコンパスで40°を作図することは不可能です。同様の理由で正9角形も作図不可能です。分度器使うのをご法度とすれば、ってことですが。なお、上のようにCos[40°]がかけることは作図をすればすぐにわかります。偏角は-π~πにあると思って1/3倍してください。実はもっと解りやすくいうと、1の9乗根Cos[40°]+iSin[40°]をxとおいたとき、(x+x^)/2がCos[40°]である、と書いてあるだけです。x^はxの複素共役だと思ってください。その意味で、これを読んだらshu17さんはがっかりされるかも知れませんね。
いずれにせよ、3の倍数でない整数度の三角比は、根号と四則演算だけで表示することは不可能です。大学レベルのガロア理論を学べば証明もできます。そして、四則演算とベキ根(平方根だけでなく、立方根や5乗根、7乗根など)も用いてよいのなら表すことができる、というわけです。ちなみに整数度の場合は、平方根と立方根と四則演算だけですべて三角比は表示できます。たとえばCos[40°]は上に書いたように表示できるわけです。
参考URL:http://ja.wikipedia.org/wiki/%E4%B8%89%E6%AC%A1% …
No.2
- 回答日時:
関数電卓で求めるとcos40°の値は0.766…になります。
自力で求めるにはマクローリン展開を計算したほうが早いのでは?
それと一辺の長さxとはどの長さでしょうか。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開に関して 以外の「」の解答を頂き 13 2022/11/11 09:45
- 数学 数学の質問です。 円に内接する四角形ABCD において, AB=2, BC = 1, CD = 3, 3 2023/04/18 18:28
- 数学 数学3の微分法・対数関数の導関数に関しての質問です。 [ ] は絶対値を表しています。 y=log[ 3 2022/05/24 14:07
- 数学 極座標A(2,π/6)となる点を通り、OAに垂直な直線lの曲方程式を求めよ という問題を直交座標を利 1 2022/08/04 17:31
- 数学 線形代数の行列についての問題がわからないです。 1 2022/07/18 17:46
- 数学 円周の近似値について。 次の方法で円周の近似値を求めました。 1.中心角が360/nの扇形を考える。 7 2022/08/17 20:30
- 数学 高2 数2 3 2022/06/20 21:39
- 数学 写真の(3)の問題の解説の1行目についてですが、 ①なぜ、曲線Kの囲む図形は、cos(-θ)と表せる 5 2023/01/26 00:36
- 数学 数2Bの数列の問題です。 自分は、 まず数列 an=ar^(n-1)と置き こちらの問題の、y= の 1 2022/07/07 16:26
- 高校 三角形の辺の長さを求める問題で余弦定理で二次方程式を解いた時に答えが2つでてしまってどちらも正なので 3 2022/09/08 17:42
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
青の吹き出しの何をどう考えれ...
-
写真は2変数関数の合成微分の公...
-
三角形の面積は、底辺✕高さ÷2 ...
-
この両辺の2Rを払う手順を教え...
-
数学の質問:関数の書き方
-
高校数学について
-
至急 a²b+a-b-1 の因数分解...
-
2980円で買った「15個のリンゴ...
-
数ⅱ等式の証明について。 条件...
-
数学得意な人程宝くじ買わない...
-
この180➗204の計算の仕方教えて...
-
xy平面上の点P(x,y)に対し,点Q(...
-
写真は多変数関数についての「...
-
数学のワークについての質問で...
-
1,189,200円の割引率が0.82500%...
-
なぜ、Δtがdtではなくdτになる...
-
344億円かかった「大屋根リング...
-
【数学】積分したあとに微分す...
-
数学です。267の説明おねがいし...
-
高2です。 数学の問題集につい...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
厄介そうな定積分
-
二重和
-
確率の質問です
-
モンティホール問題について 問...
-
【 畳み込み積分 のτ 意味がよ...
-
数学が得意な人の考え方を知り...
-
この算数問題、何がおかしい? ...
-
サイコロを100回投げて、奇数、...
-
SPI 食塩水の等量交換 完全文系...
-
割り算の不思議
-
足し算のざっくり計算が苦手で...
-
問題 √2が無理数であることを入...
-
なぜ、Δtがdtではなくdτになる...
-
全体100人のうちリンゴ派90人み...
-
新幹線が最高速度に到達するま...
-
これって①番の公式を使うのでし...
-
2.2%は分数で表すと22/1000、約...
-
数学の問題です。110で最小値を...
-
積分について
-
三角関数ですこれはなぜx=0と...
おすすめ情報